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ABSTRACT 

To understand the physiological role of the AMPA-type or kainate-type ionotropic glutamate 

receptors and their participation in sensory information processing, including pain, it will be 

necessary to develop a comprehensive description of their actions in the adult mouse spinal cord 

substantia gelatinosa (SG) region. Without selective antagonists of the AMPA and kainate receptors, 

however, pharmacology has provided little assistance in this endeavor. In this study, gene-targeted 

mice lacking GluR2 AMPA subunit and GluR5 or GluR6 kainate receptor subunits were used to 

identify the receptor subunits that comprise the AMPA and KA receptors responsible for modulation 

of primary afferent neurotransmission. 

AMPA receptors are not thought to be involved in the induction of LTP of excitatory synaptic 

transmission in the SG region, but they may be involved in the expression via several messenger 

pathways. However, one subunit of the AMPA receptors, GluR2, is known to control Ca2~ influx. To 

test whether GluR2 plays any role in the induction of LTP, the mice lacking the subunit were used in 

the present work. In GluR2 mutants, LTP in the SG region of spinal slices was markedly enhanced. 

These results suggest an important role for GluR2 subunit of AMPA receptors in regulating synaptic 

plasticity and pain behavior. 

In this study, gene-targeted mice lacking GluR5 or GluR6 kainate receptor subunits have also been 

used to identify the receptor subunits that comprise the kainate receptors responsible for presynaptic 

modulation of primary afferent neurotransmission. In the presence of synaptic inhibition, both GluR5 

and GluR6 subunits contribute to the depressant action of kainate at the C-fiber and A5-fiber-

activated polysynaptic pathways. In the absence of synaptic inhibition, the GluR6 subunit is critically 

involved in inhibiting transmission at both AS- and C-fiber monosynaptic pathways, whereas GluR5 

plays a lesser role in inhibiting the C-fiber-activated pathway. Both GluR5 and GluR6 KA receptor 

subunits contribute to the KA receptor-mediated facilitation of excitatory synaptic transmission at 

synapses on the SG neurons. These results indicate that AMPA and kainate receptors play multiple 

and complex roles in regulation of excitatory synaptic transmission in the spinal cord SG region with 

potentially significant implications for pain control. 
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CHAPTER 1. GENERAL INTRODUCTION 

Thesis Organization 

This dissertation consists of five chapters (general introduction, materials and methods, results 

(AMPA receptor and kainate receptor), and general conclusion) and a list of references cited. The 

chapters, AMPA receptor and kainate receptor, contain research results which were formulated as 

introduction, results and discussion for future publications. 

The dissertation contains a large part of the experimental results obtained by the author during the 

course of his graduate study under the supervision of Dr. Miijana Randic. 

Research Objective 

The dorsal horn (DH), especially substantia gelatinosa (SG) of the spinal cord, is known to play an 

important role in the modulation of nociceptive transmission through fine myelinated and 

unmyelinated primary afferent fibers arising from the periphery. Glutamate, or a related amino acid, 

is the major excitatory neurotransmitter at primary afferent fiber-spinal DH neuron synapses (so 

called glutamatergic synapses). Elucidating the function of glutamate and their receptors has 

traditionally relied on pharmacological approaches using compounds that act as agonists or 

antagonists at specific receptors on the pre- and postsynaptic membranes. Recently, a new tool has 

been added to the armamentarium for studying the synaptic function, namely genetic manipulations 

(esp. null mutations or 'knockouts') that delete specific subunits comprising glutamate receptors. 

The objective of this research was to investigate the role(s) of glutamate receptor subunits (GluR2, 

GluRS, or GluR6) in synaptic transmission and plasticity in the spinal DH region by using the genetic 

pharmacological tools. The specific purpose of the conducted experiments was to study physiological 

consequences resulting from the genetic deletion of specific glutamate receptor subunits at primary 

afferent fiber-spinal DH neurons synapses by recording electrical properties of passive (e.g. resting 

membrane potential, input resistance of SG neuronal membranes) and active (e.g. spontaneously or 

electrical stimulation-evoked excitatory postsynaptic potentials/currents) membranes. 

The experiments used current-clamp intracellular recordings with sharp microelectrode, and also 

whole-cell voltage-clamp recordings from in vitro adult mouse spinal cord slices with/without 

attached dorsal roots. Mice with targeted mutations deleting the GluR2, GluRS, or Glur6 have kindly 

provided by professor S. F. Heinemann (The Salk Institute, San Diego). 
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Literature Review 

This section reviews the anatomical and functional organization of spinal dorsal horn, and also 

glutamate receptors-mediated synaptic transmission and plasticity, in order to provide a background 

information for the study of the role(s) of glutamate receptor subunits in the modulation of excitatory 

synaptic transmission. 

1. Anatomical and functional organization of the spinal cord dorsal horn 

Information from sensory receptors in skin, muscle, joints and viscera is transmitted to central 

nervous system (CNS) via primary sensory neurons (Campbell et al., 1989; Gardner and Martin, 

2000; Gardner et al., 2000). The cell bodies of the primary sensory neurons are located in dorsal root 

ganglia (DRG). Each ganglion cell gives off an axon that branches into a peripheral process and a 

central process (Ramôn y Cajal, 1909). The peripheral process contributes to a peripheral nerve and 

terminates peripherally as a sensory receptor. The central process gives rise to a numerous collateral 

branches (Langford and Coggeshall, 1979, 1981) and enters into spinal cord through a dorsal root. 

Together these two processes form primary afferent fibers that transmit the encoded stimulus 

information to the spinal cord or brain stem. 

A) Primary sensory neurons in dorsal root ganglia 

Primary sensory neurons have been classified into three groups on the basis of the perikaryal 

size, distribution of cellular organelles, neurochemistry and chemosensitivity (Harper and Lawson, 

1985a, b; Sugiura et al., 1986). Large DRG cells (Type A, 30-70 pm in diameter) have short-duration 

action potentials (0.49 -1.35 ms at the base) that are tetrodotoxin-sensitive, and these cells give off 

large diameter myelinated axons (Aa and A(3). Small DRG cells (Type B, 25 -30 nm in diameter) 

produce action potentials of long duration (0.5 - 8.0 ms at the base), which in some cases are 

tetrodotoxin-insensitive. They usually give off fine myelinated (AS) and unmyelinated (C) fibers. In 

addition to these two cell groups, a number of studies describe the existence of intermediate-size 

cells, which are associated with Aô-fibers (Mastuura, 1967; Honda et al., 1983; Harper and Lawson, 

1985a). The conduction velocity and the threshold for exciting fibers are inversely related to axonal 

diameter (Table 1). The larger the fiber, the faster the conduction velocity and the lower the threshold. 

Sensory neurons with A- or C-fibers may have differences in function. It is well known that 

stimulation, from the external environment, of mechanoceptive neurons with A-fibers gives rise to a 
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well-localized sharp pricking sensation, while stimulation of nociceptive neurons with C-fibers is said 

to give rise to poorly localized unpleasant sometimes burning-type or 'unbearable' sensation 

(Torebjork and Ochoa, 1990). 

B) Sensory receptors at peripheral terminals of primary sensory neurons 

The peripheral processes of the DRG cells have different morphological and functional properties. 

The encapsulated processes of them have mechanoreceptors and proprioceptors, which are 

responsible for mediating the somatic modalities of touch and proprioception, respectively (Gardner 

et al., 2000). These receptors are innervated by DRG with large-diameter, myelinated axons that 

conduct action potentials rapidly. On the contrary, the processes with bare nerve endings contain 

nociceptors and thermal receptors which mediate painful or thermal sensations, respectively (Gardner 

et al., 2000). These receptors are innervated by DRG neurons with either unmyelinated or thinly 

myelinated axons that conduct impulses more slowly. Table 2 demonstrates relationships among 

sensory receptor types, afferent fiber types, and sensory modalities. This knowledge states that 

individual DRG neurons respond selectively to specific types of stimuli because of morphological and 

molecular specialization of their peripheral terminals, further supporting the notion of "laws of 

specific nerve energies", proposed by Johannes Miiller in 1826, that morphologically distinct 

receptors transduce particular forms of energy and transmit information to the brain through distinct 

pathways dedicated to that modality (Gardner and Martin, 2000). 

C) Central terminals of primary sensory neurons 

Generally, the central processes of primary sensory neurons enter the spinal cord through the 

dorsal roots (However, see also Coggeshall et al., 1980 for exception; i.e. there are 30% of the total 

unmyelinated fibers entering through the ventral roots in L6-S1 segments). Primary afferent fibers, 

once entering dorsal root entry zone, give off most of their collaterals in their spinal cord segment of 

entry, but rostrocaudal spread is also significant. The spread is larger for the fibers in the medial (Aô) 

than those in the lateral part (C) of Lissauer's tract (Chung et al., 1979); the tract that is located 

between the dorso-lateral edge of the dorsal hom (DH) and the surface of the spinal cord. 

The distribution of primary afferent fibers in the spinal DH is in an orderly way based on fiber size 

and sensory modality. Most small afferents with either fine myelinated (AS) or unmyelinated (C) end 

predominantly in laminae I and II, although a few reach lamina ni-VI laminae (Light and Perl, 1979a 

and b). In detail, high threshold AS mechanoreceptors terminate in laminae I and V, while low 

threshold AS mechanoreceptors only terminate in lamina HI (Light and Perl, 1979b). Most large (AP) 
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cutaneous afferents, which function as low threshold mechanoreceptors, have a characteristic pattern 

of arborization in the deeper laminae (III-VI) of the DH (LaMotte, 1977; Brown, 1981). Cutaneous C 

fibers, the majority of which are polymodal high-threshold nociceptors in the rat (Lynn and 

Carpenter, 1982), terminate in lamina II (Ralston and Ralston, 1979; Beal and Bichnell, 1981; Nagy 

and Hunt, 1983), although there is also a contribution to lamina I (Gobel et al., 1981) 

In terms of 'neurochemical markers' of primary afferent fibers, many of calcitonin gene-related 

peptide-immunoreactive peptidergic afferents contain substance P and are nociceptors (Lawson et al., 

1997). Substance P-containing afferents (which include both A and C fibers) end mainly in lamina I 

and the outer layer of lamina II ('Ho'; see below), although some penetrate deeper into the DH. Some 

C fiber-containing somatostatin terminate in lamina Ho (Sakamoto et al., 1999). Approximately, half 

of the C fibers in a somatic nerve do not contain peptides, but most of these can be revealed by their 

ability to bind the lectin Bandeiraea simplicifolia isolectin B4 (Silverman and Kruger, 1990). 

Functions of non-peptidergic C fibers are poorly understood; however, it is believed that this 

population also includes many nociceptors (Guo et al., 1999; Gerke and Plenderleith, 2001). Although 

there are no intrinsic neurochemical markers that will specifically label myelinated low-threshold 

mechanoreceptors, these can be identified by transganglionic transport of cholera toxin B subunit 

(Robertson and Grant, 1985). If CTb is injected into a peripheral somatic nerve, it is normally 

transported only by afferents with myelinated axons and this results in labeling of terminals in lamina 

I (AS nociceptors) and in laminae III-VI (AS down-hair afferents and AP afferents). 

D) Cytoarchitecture of the spinal dorsal horn (Laminae I-VI) 

The spinal DH essentially consists of the central terminals of primary sensory neurons, projection 

neurons, intrinsic DH neurons, and descending nerve fibers from the brainstem and other cerebral 

structures. Anatomically the DH of the spinal cord can be subdivided into six distinct layers (laminae) 

in the dorsal-ventral direction of the gray matter, which was proposed in cat (Rexed, 1952), as well as 

in rat (Molander et al., 1984). Rexed's Lamina I and II comprise superficial spinal dorsal horn (SDH) 

(Laired and Cervero, 1989). 

Lamina I. the marginal zone at the edge of the spinal DH, was first described as "thin veil of gray 

substance, forming the dorsal most part of the spinal gray matter" by Rexed (1952). This area 

contains from small (5 - 10 pm) to medium (10 - 15 |im) and large (30 - 50 pm) size of neurons in 

diameter, receiving direct small-diameter AS and C primary afferent input with different stimulus 

modalities from most tissues of the body (Christensen and Perl, 1970) and providing a major output 

pathway from the spinal cord to higher structures (brainstem and thalamus) (Craig, 1996). 
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Morphologically, neurons in lamina I can be grouped under basic categories of fusiform, pyramidal 

and multipolar (cf. there is also 'flattened' which is not always distinguished from multipolar) based 

on somatic shape and dendritic arborization (Lima and Coimbra, 1986; Zhang et al., 1996). These 

three morphological types are relatively evenly distributed in the cervical and lumber enlargements 

(Lima and Coimbra, 1986; Zhang et al., 1996; Zhang and Craig, 1997). Recent intracellular labeling 

evidence in cats has revealed a direct correspondence between the morphological characteristics of 

lamina I neurons and their functional responses to natural cutaneous stimuli (Han et al., 1998). 

Fusiform cells appear to be nociceptive-specific (NS) neurons, responsive only to noxious heat and 

pinch, whereas multipolar cells are polymodal nociceptive (HPC) neurons responsive to noxious heat, 

pinch and cold, and pyramidal cells are innocuous thermoreceptive (COLD) neurons, responsive only 

to cooling (Craig and Kniffki, 1985; Craig and Bushnell, 1994; Dostrovsky and Craig, 1996; Han et 

al., 1998). The NS cells are dominated by AS fiber input, and they can respond tonicallly to 

maintained noxious mechanical stimuli, so they may be important for 'first pain' (Andrew and 

Greenspan, 1999). The HPC cells are dominated by C-fiber input and can have slow ongoing 

discharge; they evince responses that match the psychophysical responses evoked by 'repeated brief 

contact heat' stimuli (Craig and Andrew, 1999), which are characterized as second pain' (Vierck et 

al., 1997). Golgi studies showed that fusiform cells have unmyelinated axons, but pyramidal and 

multipolar cells have myelinated axons (Gobel, 1978a; Lima and Coimbra, 1986). Therefore, 

nociceptive-specific cells may have slow conduction velocities whereas polymodal nociceptive and 

innocuous thermoreceptive cells faster conduction velocities (Craig and Kniffki, 1985; Craig and 

Serrano, 1994). On the other hand, by functional features, lamina I neurons can be divided into two 

groups, ventrolateral tract (VL)-projection and non-projection neurons (Grudt and Perl, 2002). VL-

projection neurons are characterized by a relatively thick axon that runs ventrally and medially 

toward the contralateral spinal cord. Non-projection neurons have axons that are directed ipsilaterally 

and that frequently exhibit extensive branching within the SDH. 

Lamina H is parallel to lamina i, and covered by that layer dorsally and laterally, but not 

medially. Due to the concentration of small neurons and their processes plus a relative paucity of 

myelinated axons (McClung and Castro, 1978; Molander et al., 1984), lamina II is observed as a 

translucent band under the naked eye, or light microscope and is called 'substantia gelatinosa (SG)'. 

This area is of particular interest since the sensory inputs to this area are entirely undertaken by AS 

and C fibers in nature (Light and Perl, 1979a and b). As in the cat, lamina II can be subdivided into an 

intensely-stained outer zone with densely packed cells and a less compact inner zone (Molander et al., 

1984). These zones are now commonly referred to as the lamina Ho and Hi. The outer zone contains 
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more small myelinated fibers than the inner zone. In the neuropil of lamina II, the most prominent 

structures are glomeruli (~5% of total synapses in lamina II) (Coggeshell and Willis, 1991). A 

glomerulus consists of a central terminal, which is a primary afferent ending, in synaptic contact with 

several surrounding dendrites and axonal terminals. In the middle of lamina II, type I glomeruli are 

predominant. The core of type I glomerulus consists of a small, electron-dense axonal terminal that 

has a corrugated contour and is filled with densely packed spherical vesicles. In the ventral portion of 

lamina H, type II glomeruli are predominant. The core of this glomerulus has an electron-lucent 

terminal with a regular contour, and it contains fewer synaptic vesicles. The central terminals in type I 

glomeruli are thought to be derived from unmyelinated primary afferent fibers, whereas those in type 

II glomeruli from myelinated fiber (Ribeiro-da-Silva and Coimbra, 1982). The glomeruli are regarded 

as key structures of the DH because they offer a morphologic basis for a more complex modulation of 

information transfer than do the more common axodendritic synapses. In lamina II, almost all neurons 

are intrinsic intemeurons (both excitatory and inhibitory). The two predominant cell types in lamina H 

are 'stalked' and 'islet' cells (Gobel 1975, 1978a, 1978b) (there are also some other types of 

intemeurons, e.g. arboreal cells, nm border cells and spiny cells). Stalked cells, similar to the 

'limitroph' neurons described by Ramon y Cajal (1909), have cell bodies that are generally located in 

the lamina Ho, dendrites which fan out ventrally and are often covered with spines and stalk-like 

branches and axons that arborize in lamina I (Todd and Spike, 1993). This type of cells have been 

thought of excitatory intemeurons (Gobel, 1978b) that receive input from at least some A5 primary 

afferent fibers (Grudt and Perl, 2002). Islet cells are present throughout lamina H and have dendrites 

that extend along the rostrocaudal axis of the spinal cord, usually remain within lamina II and often 

possess characteristic recurrent branches. The axons of islet cells arborize close to the cell body and 

dendritic tree. An interesting feature of this type of cells is that their dendrites form synapses on 

nearby dendrites and axonal terminals, i.e. "dendrodendric" and "dendroaxonic" synapses, 

respectively. It has earlier been suggested that islet cells are inhibitory intemeurons (Gobel, 1978b). 

This proposal was supported by recent findings that neurons with features of islet cell morphology 

contain GABA and glycine (Todd and Mckenzie, 1989; Todd and Sullivan, 1990). hi addition, a 

recent morphological and electrophysiological study shows that input to the islet cells stemmed from 

C-afferent fibers (Grudt and Perl, 2002). 

Laminae HI, IV, V and VI, i.e. deep to substantia gelatinosa, comprise the nucleus proprius. 

Neurons of the nucleus proprius are either intemeurons or projection neurons, receiving from inputs 

from primary afferent fibers, substantia gelatinosa intemeurons, and descending spinal tracts. 
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Therefore, the main role of the nucleus is to integrate sensory input with information that descends 

from the brain. 

Lamina III forms a broad band across the DH, parallel to both lamina I and II. In 

cytoarchitectonic studies, lamina HI has slightly larger and more widely spaced cells than lamina II 

(Rexed, 1952). Lamina HI is distinguished from lamina II by several features. First, lamina HI is 

characterized by a dense meshwork of fine as well as coarse myelinated axons that are absent or rare 

in lamina II. This suggests that lamina HI is the target of large caliber fibers that reach the DH by way 

of the dorsal funiculus. Second, whereas synapses with round vesicles (presumably with excitatory 

action) predominate in lamina II, synapses with flat vesicles (presumably with inhibitory action) are 

more numerous in lamina HI (Ralston, 1979). Third, in contrast to lamina II, where type I glomeruli 

are most common, type II glomuruli are present exclusively in lamina HI (Bennett et al., 1980). 

Although a large population of lamina HI cells are not identified as yet in terms of cell types, two 

particular cell types, spinocervical tract cells and postsynaptic dorsal column cells which project to 

the spinocervical nucleus and into the dorsal columns, respectively, have been demonstrated (Brown 

et al, 1977; Brown and Fyffe, 1981; Brown, 1981). The spinocervical tract cells have their dendrites 

that are oriented more in the longitudinal than in the transverse plane, that do not travel into lamina I 

or IIo (Brown, 1981) and that would not get direct input from many fine afferent fibers (Brown, 

1981). By contrast, dendrites of the postsynaptic dorsal column cells do travel dorsally into laminae II 

and I, their dendritic trees are not restricted mediolaterally, and they could have extensive 

monosynaptic contacts from fine afferent fibers. Although axons from some of the lamina III cells are 

restricted in this lamina, many other cells have axonal ramifications at least partially outside lamina 

III, for example, laminae IV-VI, the ipsilateral dorsolateral funiculus and the contralateral ventral 

funiculus (Light and Kavookjian, 1988). Primary afferent input into lamina HI comes from the flame-

shaped arbors, which have recently been shown to carry information from hair follicles (Coggeshall 

and Willis, 1991). Other types of coarse primary afferent^ that enter lamina in arise from Pacinian 

corpuscles and rapidly and slowly adapting fibers. On the other hand, although there is fine primary 

afferent input into lamina m, e.g. unmyelinated axons-forming synapses in lamina ni (Sugiura et al., 

1986, 1989), it seems to be much less important than the coarse fiber input. Therefore, any C-fiber 

input in lamina HI may be relayed by neurons in the superficial laminae with axons that pass ventrally 

('polysynaptic') (Light and Kavookjian, 1988) or by some neurons in lamina IH with dendrites that 

pass dorsally ('monosynaptic') (Szentagothai, 1964; Surmeier et al., 1988; Todd, 1989; De Koninck 

et al., 1992; Ma et al., 1996). 
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Lamina IV is a relatively thick layer that extends across the DH. It forms a band beneath laminae 

II and m but does not possess their characteristic lateral curvature. Lamina IV is different from the 

substantia gelatinosa by several features: (1) the presence of a larger, fair concentration of medium-

sized neurons and of a larger, pyramidal type neuron (Ramon y Cajal, 1909; Scheibel and Scheibel, 

1968; Rethelyi, 1984); (2) the absence of glomeruli (Ralston, 1968); and, finally, (3) the fact that the 

dendrites of typical lamina IV neurons radiate in all planes rather that sagittally (Scheibel and 

Scheibel, 1968), with a preferential spread in the lateral direction (Proshansky and Egger, 1977). 

Lamina IV can also be distinguished from lamina HI by the heterogeneity of neuronal sizes and the 

presence of some very large cells compared with more homogeneous, smaller cells that characterize 

lamina HI. The neurons in this layer are of various sizes, ranging from small (approximately 8 by 11 

|im) to large (35 by 45 ^un) (Coggeshall and Willis, 1991). The largest cells are relatively infrequent, 

but they are so prominent that there is a general impression that this is a layer with large cells. The 

dendrites of lamina IV neurons penetrate the overlying laminae II and HI, and their axons have two 

components, a rich local plexus in lamina V (Rastad et al., 1977; Brown et al., 1977) and a main 

branch that proceeds towards the lateral funiculus. The main branch, which gives off numerous 

collaterals along its course (Maxwell and Koerber, 1986), has been traced to the spinocervical tract 

(Brodai and Rexed, 1953; Craig, 1978; Rastad et al., 1977), the dorsal funiculus (Brown, 1981), the 

spinothalamic tract (Willis et al., 1979) and the spinohypothalamic tract (Burstein et al., 1990). This 

indicates that the larger lamina IV neurons are long-distance projection neurons. The major input into 

lamina IV neurons is thought to be terminal ramifications of large myelinated primary afferent fibers. 

Experimental studies failed to show a fine primary afferent input into lamina IV (LaMotte, 1977; 

Light and Perl, 1977). Supportively, at the electron-microscopic level, the degeneration of primary 

afferent fibers and terminals in lamina IV is characterized by neurofilaments and electron-lucent 

degeneration, which corresponds to large and fine myelinated afferents, respectively, in contrast to 

the electron-dense (unmyelinated afferent fibers) degeneration that characterizes laminae I and H 

(Ralston and Ralston, 1982). 

Lamina V forms the neck of the DH, medially limited by white matter and laterally transformed 

gradually through a mesh of myelinated fibers into white matter. The neurons show even more 

variability than in the lamina IV (8 by 10 pm to 30 by 40 jim). The dendrites of lamina V neurons, in 

contrast to those of lamina IV, are planar, extending mediolaterally and dorsoventrally but not 

sagittally (Scheibel and Scheibel, 1968). Their dendritic arbor forms stacked discs lined up 

transversely along the length of the cord. The inputs to this lamina are predominantly C fibers from 

viscera, A8 fibers from skin and group IV fibers from muscle. In addition, there are also descending 
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inputs from corticospinal and rubrospinal tract fibers. The projections of lamina V neurons are similar 

to the ones of lamina IV. 

Lamina VI exists only in the cervical and lumbosacral enlargements (Rexed, 1952), where it 

appears as a distinct band, darker than laminae V and VII, in Nissl stained sections (Coggeshell and 

Willis, 1991). The cells in this layer are smaller (8 by 8 pm) and more regular in their arrangement 

than those in lamina V. The dendrites of lamina VI neurons are less regular (Scheibel and Scheibel, 

1968). Neurons in this area have complex input from many collaterals of primary afferent axons, 

which destine to reach ventral horn cells in this area (Raymôn y Cajal 1909; Scheibel and Scheibel, 

1968) 

2. Synaptic transmission in the spinal cord DH 

A number of studies indicate that glutamate and aspartate are the major candidates for the fast 

excitatory neurotransmitters (Mayer and Westbrook, 1987; Kangrga et al., 1988; Yoshimura and 

Nishi, 1993), whereas tachykinins appear to be involved in the slow excitatory synaptic transmission 

(Urban and Randic, 1984). 

It is presently well known that glutamate, or a related amino acid, is the major excitatory 

neurotransmitter mediating the fast excitatory transmission in mammalian CNS (Mayer and 

Westbrook, 1987; Wroblewski and Danysz, 1989) including the spinal DH (Jahr and Jessell, 1985; 

Kangrga et al., 1988; Gerber and Randic, 1989a; Yoshimura and Jessell, 1990). Glutamate has been 

found in the DRG neurons (De Biasi and Rustioni, 1988), from which it is released upon activation of 

the primary afferents (Kangrga and Randic, 1990, 1991). Glutamate produces fast excitatory 

postsynaptic potentials (EPSPs) in the spinal DH cells via activation of postsynaptic glutamate 

receptors (Gerber and Randic, 1989a; Yoshimura and Jessell, 1990). 

Glutamate receptors (GluRs) fall into two distinct classes: ionotropic and metabotropic receptors, 

lonotropic GluRs (iGluRs) are glutamate-gated ion channels, which could be further subdivided into 

the N-methyl-D-aspartate (NMDA), a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) 

and kainate (KA) subtypes according to their agonist profiles (Watkins et al., 1990). Metabotropic 

GluRs (mGluRs) are coupled to GTP-binding proteins. They appear to modulate the excitatory 

neurotransmission by the synthesis of second-messenger molecules and play a role in the regulation 

of the opening of ion channels (Pin and Duvoisin, 1995). At most central synapses, both AMPA and 

NMDA receptors are activated during synaptic transmission. AMPA receptors mediate fast 

neurotransmission, whereas NMDA receptors contribute to the late components of fast EPSPs. 
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A) Ionotropic GluRs 

NMDA receptors, having subunits of NR1, NR2A-D subunits and NR3A-B, mediate excitatory 

neurotransmission in the CNS in different ways from AMPA receptors. In the spinal synaptic 

transmission, NMDA receptors appear to contribute to the generation of slow EPSPs (Gerber and 

Randic, 1989b; Gerber et al., 1991), and underlie the wind-up phenomenon (Dickenson, 1990) that 

can be important in pain. Functional NMDA receptors are heteromeric assemblies composed of 

multiple NR1 subunits in combination with at least one type of NR2. The NR3 subunits can also co-

assemble with NR1 (Das et al., 1998; Perez-Otano et al., 2001; Chatterton et al., 2002) to form unique 

excitatory glycine receptors (Chatterton et al., 2002). At present, NMDA receptors have notoriously 

been characterized by a high permeability to Ca2* ion (MacDermott et al., 1986), voltage-dependent 

block by Mg2+ ion (Mayer et al., 1984) and slow 'activation/deactivation' kinetics (Lester et al., 

1990). Further, different combination of subunits and splice variants by alternative splicing confer the 

delicate functional properties to NMDA receptors (Cull-Candy et al., 2001). For example, 

diheteromeric NMDA receptors containing NR2A or NR2B subunits are featured by high-

conductance channel openings with a high sensitivity to block by Mg2+ ion, whereas receptors 

composed of NR2C or NR2D subunits give rise to low-conductance openings with a lower sensitivity 

to extracellular Mg2+ ion. Moreover, once glutamate was applied briefly, NRl/NR2A-containing 

NMDA receptors generate a macroscopic current with a deactivation time constant of tens of 

milliseconds. However, the current generated by NRl/NR2D-containing NMDA receptors has a 

deactivation time constant of several seconds due to their high affinity to glutamate (Monyer et al., 

1994; Wyllie et al., 1998; Vicini et al., 1998). These unique properties provide the NMDA receptors 

with critical roles in excitatory synaptic transmission/plasticity and pathology. 

In the spinal cord, in situ hybridization studies show high expression of NR1 and NR2D mRNA 

throughout all laminae (Toile et al., 1993; Luque et al., 1994). In addition, electrophysiological 

studies, recording of single-channel (outside-out) and synaptic currents, address the precise 

distribution of each NMDA receptor subunit, i.e., both NR1/NR2B (high conductance; 57 pS) and 

NR1/NR2D (low conductance; 44 pS and 19 pS) receptors are present extrasynaptically, whereas 

NR2A receptors predominate at primary afferent fiber-spinal DH synapses, which was determined by 

the kinetic and pharmacological properties of the NMDA receptor-mediated EPSCs (Momiyama, 

2000). 

Most of selective NMDA receptor agonists available are based on NMDA, the diagnostic ligand 

for these receptors. NMDA itself is an analogue of aspartate. Although this compound acts selectively 

at NMDA receptors, it cannot discriminate between receptor subtypes. Recently, a conformational^ 
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constrained analogue of glutamate, homoquinolinic acid, has been shown to have higher affinity for 

NMDA receptors that contain NR2B subunit (Prado de Carvalho et al, 1996). As the most commonly 

used antagonist, D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5) acts at the glutamate binding 

site, and shows tendency to selectivity for NR2A and NR2B- containing NMDA receptor. On the 

other hand, (55, l0/?)-(+)-5-methyl-10,1 l-dihydro-5/f-dibenzo[a,d]cyclohepten-5, 10-imine maleate 

(MK801) did not bind to the glutamate recognition site (Wong et al., 1986) and appeared to block 

current flow by binding to a site within the activated NMDA receptors (Huettner and Bean, 1988). 

This accounts for the use-dependent, or uncompetitive, antagonism by MK801. Ifenprodil, which has 

been known as NR2B subunit selective ligand acting at NMDA receptor polyamine site, may prove 

beneficial in the treatment of chronic pain (Boyce et al., 1999; Chizh et al., 2001; Wei et al., 2001). 

AMPA receptors are composed of heteromeric assemblies of the GluRl, 2, 3 and/or 4 subunits; 

different assemblies of subunits confer specific functional properties on the channel (Dingledine et 

al., 1999). GluR2 subunit has important role in determining the ion selectivity of the AMPA receptor-

channel because its presence in an edited form renders the channel impermeable to Ca2+ ions. GluR2 

transcripts undergo RNA editing, producing a one-amino acid change (e.g. positively charged 

arginine (R) at position 586 of the transmembrane segment 2, instead of the neutral glutamine (Q) in 

the other subunits; the so called 'Q/R site') in the channel pore that decreases Ca2+ permeability. 

AMPA receptors lacking GluR2 have high Ca2+ permeability ratio (PCi: Pni = 3) and display a strong 

inward rectification in a current-voltage relationship (Hollmann and Heinemann, 1994; Dingledine et 

al., 1999). 

The study of agonists on AMPA receptors has been examined in detail for both recombinant and 

native AMPA receptors. In both experimental systems, agonist-activated currents desensitize rapidly 

for AMPA, quisqualate and glutamate, and to a limited degree for KA as an agonist. Rank orders of 

potency for steady-state currents follow quisqualate>AMPA>glutamate> KA for recombinant AMPA 

receptor subunits (flip). A series of quinoxalinedione compounds are known as competitive 

antagonists for AMPA receptors. Although these compounds, e.g. 6-cyano-7-nitroquinoxaline-2,3-

dione (CNQX), 6,7-dinitroquinoxaline-2,3 -dione (DNQX) and 2,3-dioxy-6-nitro-l,2,3,4-

tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), have significant inhibitory activity at KA 

receptors, they have become standard tools for the study of AMPA receptors. In a study with 

heteromeric complexes of recombinant GluRl/2 and GluR2/4 AMPA receptors, NBQX was more 

potent than CNQX (ICS0 values 60 nM and 400 nM, respectively (Stein et al., 1992). NBQX, but not 

CNQX, has been shown to be dependent upon the agonist used, with activity greater for KA > 

glutamate > AMPA (Lambolez et al., 1992; Stein et al., 1992). Another class of compounds, the 2,3-
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benzodiazepine, that have enabled pharmacological separation of AMPA and KA receptor-mediated 

events is known. The most widely studied of these are GYKI52466 (l-(4-aminophenyl)-4-methyl-7,8-

methylenedioxy-5H-2,3-benzodiazepine) and GYKI53655 (l-(4-aminophenyl)-3-methylcarbamyl-4-

methyl-7,8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine). The ICS0 of GYKI53655 for 

AMPA receptors is less than 1 pM (c.f. 9.8 pM for GYKI52466), and it has no effect on KA receptors 

at concentration as high as 100 pM (Paternain et al., 1995; Wilding and Huettner, 1995). A 

diastereomer of 4-methylglutamate, SYM 2206 ((±)-4-(4-aminophenyl)-l ,2-dihydro-1 -methyl-2-

propylcarbamoyl-6,7- methylenedioxyph thalazine), has been reported to be a potent non-competitive 

AMPA receptor antagonist (IC50 = 1.6 pM), working at the same site as GYKI52466 and GYKI53655 

(Pelletier et al., 1996). in addition, Joro Spider toxin (JSTX) and philanthotoxin have been shown to 

selectively attenuate AMPA receptor-mediated responses of spinal neurons in vivo (Jones and Lodge, 

1991) and appear to do so by acting as open channel blockers (Priestley et al., 1989). Studies using 

recombinant AMPA receptor subunits show that JSTX has high affinity for GluRl, 3 and 4 (IC50 of 

30 nM) but has no effect on GluR2(R) (Blaschke et al., 1993; Herlitze et al., 1993) 

AMPA receptors mediate fast excitatory synaptic transmission in most of the synapses in the CNS. 

Their rapid openings at resting membrane potential are suitable for this purpose. The functional 

significance of Ca2+-permeable AMPA receptors has been studied in a population of hippocampal, 

neocortical non-pyramidal and spinal DH neurons (Gu et al., 1996; Isa et al., 1996). Particularly, in 

the spinal DH neurons, Ca2+-permeable non-NMDA receptors have been demonstrated in vitro by 

Ca2+ detection using indicator dyes (Reichling and MacDermott, 1993), ion permeability studies 

(Goldstein et al., 1995), pharmacology (Gu et al., 1996) and agonist-induced cobalt loading 

immunocytochemistry (Engelmann et al., 1999). These receptors participate in synaptic transmission 

in vitro (Gu et al., 1996) and may also be present at synaptic sites in vivo. A higher percentage of 

postsynaptic AMPA receptor clusters, in DH CI (also called 'type I') glomeruli (CI terminals are 

mainly endings of unmyelinated afferent fibers), are immunopositive for GluRl than for GluR2. 

However, more of GluR2 are in DH C2 (also, called 'type IT) terminals (considered endings of small 

myelinated afferent fibers) (Popratiloff et al., 1996), suggesting that AMPA receptors lacking GluR2 

may participate in synaptic transmission between DRG and DH neurons. Moreover, 

immunocytochemical evidence indicates that nearly all (97%) of the GluR2/3-immunoreactive 

neurons are not GABA- or glycine-immunoreactive, the finding indicating the prominent expression 

of Ca2+-permeable AMPA receptors on the inhibitory intemeurons (Spike et al., 1998). These results 

raise the possibility that Ca2+-permeable AMPA channels may play a special role in the mediation of 

sensory input by unmyelinated fibers (Popratiloff et al., 1996) and especially transmission of 
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nociceptive information (Engelmann et al., 1999). Work by the MacDermott's group (Gu et al., 1996), 

and others (Jia et al., 1996; Mahanty and Sah, 1998; Youn et al., 2000; Heinemann et al., 2001; 

Randic and Youn, 2001), suggests that activation of Ca2+-permeable AMPA receptors, may lead to 

synaptic strengthening. A recent finding indicates that Ca2+-permeable AMPA receptors may relate to 

mechanical allodynia after a mild thermal injury (Sorkin et al., 1999). 

KA receptors have five subunits, termed GluRS - 7, KA 1 and 2 (For reviews see: Hollmann and 

Heinemann, 1994; Dingledine et al., 1999; Lerma et al., 2001). They are believed to share the same 

transmembrane topology and stoichiometry as AMPA and NMDA receptors. Thus they are thought 

to be a tetramer in which each monomer carries its own ligand-binding site and contributes with a 

specific amino acid stretch to form the channel lumen. Radioligand binding assays have identified 

two subclasses of KA receptors with different affinity. GluRS, 6 and 7 may represent the low affinity 

KA-binding site with a dissociation constant (KD) of 50-100 nM (Bettler et al., 1992), whereas KA I 

and 2 correspond to the high affinity KA-binding site (KD of ~4 - 15 nM) in neuronal membranes 

(Werner et al., 1991; Herb et al., 1992). 

There are two important sources to confer structural variability to KA receptors: alternative 

splicing and RNA editing (Lerma et al., 2001). The former has been reported exclusively in GluRS 

(GluRS-1, 5-2a, 5-2b and 5-2c; Sommer et al., 1992) and GluR7 (GluR7a and 7b; Schiffer et al., 

1997) in rat. However, the mouse GluR6 has been found to exist as two splice variants that differ in 

their COOH-terminal domains (Gregor et al., 1993). The role of the different KA receptor splice 

variants is unknown. The latter is a post-transcriptional modification occurring at a Q/R site, like 

GluR2 subunit, of M2 segment only in GluRS and GluR6 subunit (but not in GluR7, KA1, and KA2). 

As is the case for the GluR2 AMPA receptor, it has been shown that the Q-to-R substitution in GluR6 

homomeric KA receptors decreases the permeability to Ca2+ (Bumashev et al., 1995; Egebjerg et al., 

1993) whilst increasing their chloride permeability (Bumashev et al., 1996). At the same time, the 

presence of a R at this site transforms the rectification properties of these receptors from inwardly 

rectifying to linear or slightly outwardly rectifying and reduces the unitary conductance of the 

channels. This RNA editing process is developmental^ regulated. The majority of GluR6 editing 

occurs earlier than for GluRS, and it is more thoroughly completed in the mature nervous system: up 

to 95% of GluR6 transcripts are edited, compared with 50-60% observed for the GluRS subunit 

(Bernard et al., 1994; Paschen et al., 1994, 1995, 1997; Schmitt et al., 1996). In addition, it may be 

important to note that the RNA editing of KA receptors seems to be site- and cell-specifically 

regulated. The functional implications of this process are not well understood as yet. For instance, 

mice with mutations at the Q/R editing site in GluRS, so that all GluRS was edited, have been found 
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to exhibit a reduction of KA receptor-mediated currents in their sensory neurons (Sailer et al., 1999), 

but the responses of these animals to painful stimuli are not altered. Besides of Q/R editing site, two 

additional positions prone to RNA editing have been identified in the Ml segment of this subunit: the 

W site, where a valine can substitute for an isoleucine, and the Y/C site, where a tyrosine can be 

replaced by a cysteine (Kohler et al., 1993). Editing at these positions modulates the effect of the Q/R 

site in Ca2+ flow, such that the fully edited subunit exhibits null passage of this cation. The 

mechanism of interaction among these three sites remains to be elucidated. 

A major hindrance to understanding of KA receptors has been the lack of specific agonists and 

antagonists. Although a clear pharmacological boundary has been traced between NMDA and the 

other ionotropic glutamate receptor classes, the separation between AMPA and KA receptors has only 

been vaguely sketched and, for the longest time, the two types have been pooled together into what 

has been called the non-NMDA receptor subtype. KA, albeit showing a clear preference for KA 

receptors, has a very significant effect on AMPA receptor channels at relatively low doses. The 

difference in ECj0 between the two receptors lies around a mere 5- to 30-fold higher affinity for KA 

receptors (Clarke et al., 1997; Huettner, 1990; Lerma et al., 1993; Wilding and Huettner, 1996). It has 

been suggested that only a concentration range (300 nM -3 pM) of KA selectively activates KA 

receptors in CA1 hippocampal neurons (Miiller et al., 2000). Domoate, one of the first AMPA/KA 

receptor agonist to be identified, is 20- to 25-fold more effective than KA on DRG cells and on 

recombinant GluRS subunits (Huettner, 1990; Sommer et al., 1992). SYM 2081 ((2S-4R) 

diastereomer of 4-methylglutamate) is one of the latest additions to the list of specific KA receptor 

agonists. It displays a selectivity three orders of magnitude larger for KA than for AMPA receptors 

both in binding and in functional assays, but the selectivity of this molecule for KA over NMDA 

receptors is significantly lower, only 200-fold (Gu et al., 1995). Although its pharmacological profile 

is incomplete, SYM2081 does not seem to show the subunit specificity, as it elicits rapidly 

desensitizing currents on GluRS and GluR6 homomeric channels. SYM 2081 has also been used as a 

functional antagonist of the KA receptors (Li et al., 1999) because its presence at low concentrations 

drives the receptor to an inactive state, preventing its subsequent opening by other agonists. (RS)-2-

Amino-3-(3-hydroxy-5-/er<-butylisoxazol-4-yl)propanoic acid (ATPA), which was originally 

developed as AMPA analogue, is highly potent (Kp 4.3 nM in radio-labeled competitive inhibition; 

Hoo et al., 1999) and exclusively selective for GluRS receptors over other KA receptor subunits, or 

AMPA receptor subunits (ECS0 = 2.1 pM for recombinant GluRS subunits; Clarke et al., 1997). 

However, it has been recently shown (Patemain et al., 2000) that ATPA can also act on GluR5/KA2 

(EC$o = 6.3 pM), GluR6/KA2 (EC$o = 84 pM), and GluR5/GluR6 heteromers (EC50 = 12 pM). The 
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quest for specific KA receptor antagonists has not been as successful as the search for agonists. 

Initially, NS-102 was proposed as a selective antagonist, but it was later found that its IC50 for KA 

receptors is similar as that for AMPA receptors, which limited its usage. One of recent achievement 

for selective antagonists is LY382884. It has been shown to have an even higher selectivity for GluRS 

over the other KA receptor subunits and, more importantly, over AMPA receptors (Bortolotto et al., 

1999; Simmons et al., 1998). 

The differential expression of the subunits of KA receptors in the DRG and the spinal DH has 

been reported. The expression of GluRS was detected strongly in DRG neurons, particularly small 

neurons (Huettner, 1990; Partin, 1993), and weakly in the spinal DH (Toile et al., 1993; Hwang et al., 

2000). The expression of other subunits has also been detected within DRG, including GluR6, GluR7, 

KA1 and KA2 (Partin et al., 1993; Petralia et al., 1994; Hwang et al., 2000), and in the spinal DH 

with moderate signal of GluR7 and KA1, strong signal of KA2, and no signal of GluR6 (Tôlle et al., 

1993). However, a recent finding that the expression of GluR6 was up-regulated by inflammatory 

condition is of interest (Zou et al., 2000). In contrast to AMPA receptors, the mediation of fast 

excitatory synaptic transmission by KA receptors at synapses between primary afferents and the 

spinal DH neurons has only recently been demonstrated (Li et al., 1999). In the spinal DH (Li et al., 

1999), like in hippocampus (Castillo et al., 1997; Vignes and Collingridge, 1997), the KA receptor-

mediated excitatory postsynaptic currents (EPSC) have much smaller peak amplitude and slower 

decay kinetics than AMPA receptor-mediated EPSCs. As KA receptors containing GluRS subunit are 

present at high level on C primary afferents (Huettner, 1990; Partin et al, 1993), they have been 

suggested to contribute to synaptic transmission of nociceptive signals. Recent findings that LY 

382884, a selective GluRS subunit antagonist, has analgesic action in formalin-injected rats 

(Simmons et al., 1998) and that a desensitizing KA receptor selective agonist SYM 2081 has 

antinociceptive effect on behavioral responses to nociceptive heat stimuli (Li et al., 1999) suggested 

that nociceptive transmission can be regulated by KA receptors. 

B) Metabotropic GluRs 

The eight presently described mGluRs are grouped into three classes based on structural 

homology, pharmacology, and signal transduction mechanisms: Group I (mGluR 1 and 5) are coupled 

to phospholipase C (PLC) and stimulate phosphoinositide hydrolysis and intracellular Ca2* signal 

transduction, whereas Group II (mGluR 2 and 3) and Group HI (mGluRs 4 and 6-8) are negatively 

coupled to adenylate cyclase (Nakanishi, 1994; Conn and Pin, 1997). Group II and HI mGluRs are 

also known to inhibit the function of voltage-dependent Ca2+ channels and activate or potentiate 
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potassium channels, both of which could lead to modulation of synaptic transmission. Out of the 

eight mGlu receptors cloned, high levels of staining for mGlul (mainly mGlu la), mGlu5 (mGlu 5a 

and b), and mGlu? receptors are found in laminae I and II of the DH in the rats (Shigemoto et al., 

1992; Vidnyânszky et al., 1994; Ohishi et al., 1995; Boxall et al., 1998; Berthele et al., 1999), with 

the mGluS receptor being predominantly located on the soma and dendrites of DH neurons 

(Vidnyânszky et al., 1994; Jia et al., 1999). Levels of mRNA coding for mGlu2 and mGlu4 receptors 

are very low in the spinal cord with a moderate signal for mGluR3 receptors in the DH, much of this 

being in glia (Ohishi et al., 1993, 1995; Boxall et al., 1998). No mRNA labeling for mGluR6 and 

mGluRS has been detected in the rat spinal cord (Valerio et al., 1997). Evidence supports the 

possibility of the presence of autoreceptors belonging to all three groups of mGluRs on central 

endings of primary afferents in the spinal cord, though their presence in primary afferent fibers 

appeared sporadic (Vidnyânszky et al., 1994; Li et al., 1997; Valerio et al., 1997; Jia et al., 1999). 

Although the physiological role of mGluRs is not clear, it has recently been shown that the activation 

of mGluRs can modulate (both depress and potentiate) glutamatergic transmission (Chen and 

Sandkûhler, 2000; Zhong et al., 2000; Gerber et al., 2000a,b). Studies of the actions of mGluR 

agonists and antagonists on responses of spinal cord DH neurons (Neugebauer et al., 1994, 1998; 

Young et al., 1994, 1995, 1997) to noxious and non-noxious stimuli indicate that mGluRs are 

primarily involved in mediating nociceptive inputs. 

3. Synaptic plasticity in the spinal cord 

The efficiency of synaptic transmission in the CNS is not constant and can be modulated by the 

rate of activity in synaptic pathways. The leading experimental model for such a change has been 

long-term potentiation (LTP), an increase in synaptic strength that lasts for hours to days. More 

recently, a long-term depression (LTD), a decrease in synaptic efficacy, has also been described 

(Bliss and Collingridge, 1993; Malenka, 1995; Linden and Connor, 1995; Malenka and Nicoll, 1997; 

for a recent review, Malenka and Nicoll, 1999). Although the biochemical mechanisms involved in 

the induction and expression of LTP/LTD have not been definitely identified, leading candidates 

include subunit-specific AMPA receptor cycling at synapses (Shi, et al., 1999; Zhu et al., 2000; Liu 

and Cull-Candy, 2000), as well as diffusible intercellular messengers and 

phosphorylation/dephosphorylation processes involving specific protein kinases and protein 

phosphatases (Lisman, 1997; Barria et al., 1997; Lisman et al., 1997; Lee et al., 2000). These 
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dynamic changes in synaptic strength are thought to provide a cellular basis for information storage in 

the CNS. 

The existence of long-term modifications of primary afferent neurotransmission following 

repetitive stimulation of a dorsal root (DR), or peripheral nerve, has been reported both in vitro and in 

vivo in the rat spinal cord, and there are some indications of having essentially the same mechanisms 

as it does in the brain (Randic et al., 1993; Pockett, 1995; Randic, 1996; Liu and Sandkiihler, 1995, 

1997, 1998; Sandkiihler et al., 1997; Svendssen et al., 1997, 1998, 1999; Sandkiihler and Liu, 1998; 

Chen and Sandkiihler, 1999; Gerber et al., 2000a). Both the AMPA and the NMDA receptor-

mediated components of afferent neurotransmission can exhibit LTP and LTD (Randic et al., 1993; 

Svendsen et al., 1998). The cellular mechanisms underlying LTP and LTD in the DH are still not 

well understood. There is evidence for involvement of NMDA receptor and postsynaptic Ca2> since 

NMDA receptor antagonists or loading of DH cells with a Ca2+ chelator BAPTA block the induction 

of LTP and LTD (Randic et al., 1993; Liu and Sandkiihler, 1998). In addition, recent studies suggest 

the potential role of neurokinin 1 (NK1), Group I and II metabotropic glutamate and opioid receptors 

in the generation and maintenance of LTP and LTD (Randic, 1996; Liu and Sandkiihler, 1997, 1998; 

Zhong et al., 1998, 2000; Chen and Sandkiihler, 1999; Gerber et al., 1999, 2000a; Randic et al., 

1999). Evidence supports a role for several Ca2+-sensitive protein kinases in induction of LTP, and 

protein phosphatases in induction of high-frequency stimulation (HFS)-induced LTD. Although at 

present it is not certain whether pre- or postsynaptic factors, or both, are responsible for expression of 

LTP of the primary afferent neurotransmission, a finding that a brief HPS of primary afferent fibers at 

C-fiber strength produced a sustained enhanced release of endogenous glutamate and aspartate in the 

slice superfusate, suggests the involvement of presynaptic factors (Randic, 1996). Although 

transduction mechanisms involved in the generation of LTD in the spinal DH are not well known, it 

has been suggested that the synaptic activation of protein phosphatases plays a role in the generation 

of HFS-induced LTD (Randic, 1996). In contrast, the induction of low-frequency stimulation-

induced LTD in the DH appears not to require synaptic activation of protein phosphatases 

(Sandkiihler et al., 1997). However, there is evidence for the involvement of metabotropic glutamate 

receptors (Zhong et al., 1998, 2000; Chen and Sandkiihler, 1999; Gerber et al., 2000a,b) and opioid 

receptors (Randic, 1996). Whereas, in the brain, LTP and LTD are associated with the processes of 

learning and memory, their principal roles in the superficial spinal DH may be related to plasticity of 

spinal nociception. 
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Table 1. Afferent Fiber Groups (Gardner et al., 2000) 

Cutaneous nerve Fiber diameter (ftm) Conduction velocity (m/sec) 

Myelinated 

Large Aa 13-20 80-120 

Small Ap 6-12 35-75 

Smallest A8 1-5 5-30 

Unmyelinated C 0.2-1.5 0.5-2 

Table 2. Receptor types active in somatic sensation (Gardner et al., 2000) 

Receptor type Fiber group Modality 

Cutaneous and subcutaneous mechanoreceptors Touch 

Meissner's corpuscle Aa, P Stroking, fluttering 

Merkel disk receptor Aa, P Pressure, texture 

Pacinian corpuscle Aa, P Vibration 

Ruffini ending Aa, P Skin stretch 

Hair-tylotrich, hair-guard Aa, P Stroking, fluttering 

Hair-down A5 Light stroking 

Field Aa, P Skin stretch 

Thermal receptors Temperature 

Cool receptors AS Skin cooling (25°C) 

Warm receptors C Skin warming (41°C) 

Heat nociceptors AS Hot temperature (>45aC) 

Cold nociceptors C Cold temperature (<5°C) 

Nociceptors Pain 

Mechanical AS Sharp, pricking pain 

Thermal-mechanical AS Burning pain 

Thermal-mechanical C Freezing pain 

Polymodal C Slow, burning pain 

Muscle and skeletal mechanoreceptors Limb proprioception 

Muscle spindle primary Aa Muscle length and speed 

Muscle spindle secondary AP Muscle stretch 

Golgi tendon organ Aa Muscle contraction 

Joint capsule mechanoreceptors AP Joint angle 

Stretch-sensitive free endings AS Excess stretch or force 
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CHAPTER 2. MATERIALS AND METHODS 

1. Genetic background of mutant mice 

All mutant mice used for experiments were provided by Professor S.F. Heinemann, Molecular 

Neurobiolog Lab, The Salk Institute, San Diego. Some of mice used for control (129SvEv or 

B6129F1 strain) were purchased from Taconic Inc, ME. Mouse strains originating from embryonic 

stem (ES) cell lines and blastocysts, used to generate chimeras, are listed in the table I. 

All experiments were approved by the University Animal Care and Use Committee and were 

consistent with the ethical guidelines of the National Institutes of Health and of the International 

Association for the Study of Pain. Moreover, all efforts were made to minimize the number of 

animals used, and their suffering. Developmental compensation could be a concern in knockout 

experiments; however, we feel this is unlikely because levels of mRNA expression of other kainate 

receptor subunits were unchanged in GluR6 mutant (Mulle et al., 1998) or GluR5 mutant mice (A. 

Sailer, unpublished observations). Furthermore, functional replacement of whole-cell kainate 

receptor currents does not occur in CA3 pyramidal neurons (Mulle et al., 1998), cerebellar Purkinje 

neurons (Brickley et al., 1999), or dorsal root ganglion neurons (G. T. Swanson, unpublished 

observations). Each knockout mouse used in this study was genotyped by Southern blot analysis of 

tail DNA. 

2. Spinal cord slice preparation 

Under deep isoflurane anesthesia, segments of the lumbosacral (L4-L6) spinal cord were removed 

with long (8-15 mm) dorsal roots. Several transverse slices (400-450 pm thick) were cut with 

attached dorsal roots in an oxygenated (95% 02, 5% C02) Krebs-bicarbonate solution (4°C) on a 

vibratome and placed in a holding chamber (33 ± 1°C) to recover for at least 1 hr. Slices were cut 

and mounted in a medium comprising (mM): NaCl, 124; KC1, 5; KH2P04, 1.2; CaCl,, 2.4; MgS04, 

1.3; NaHC03, 26; glucose, 10; pH 7.4, 310 to 320 mOsm. A single slice was then transferred into a 

recording chamber where it was submerged beneath an oxygenated supervising medium (flow rate of 

about 3 ml/min, 33-34°C) containing (in mM): NaCl, 128; KC1, 1.9; KH2P04, 1.2; CaCl2, 2.4; 

MgS04, 1.3; NaHCO], 26; glucose, 10; pH 7.4, 310 to 320 mOsM, and was equilibrated with 95% 

02, 5% C02. This solution was usually used for conventional intracellular recordings and some 

whole-cell patch-clamp recordings, if not specified. 
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3. Elcctrophyslology 

Dorsal root stimulation and conventional intracellular recording. Intracellular recordings with 

sharp microelectrodes were made from substantia gelatinosa (SG, lamina H) neurons. When viewed 

under a dissecting microscope at a magnification of x 10-40 with transmitted illumination, the SG was 

distinguishable as a translucent bend in the spinal SG, although it was difficult to discern with 

certainty the border between laminae I and n. Under visual control, a single fiberglass (#6010; o.d. 

and i d., 1.0 and 0.58 mm, respectively; AM Systems, Carlsborg, WA, USA) microelectrode filled 

with 4 M potassium acetate (pH 7.2) (DC resistance: 140-220 MO) was placed in the SG, and 

neurons were impaled by oscillating the capacity compensation circuit of a high-input impedance 

bridge amplifier (Axoclamp 2A, Axon Instruments, Foster City, CA, USA). A DC pen-recorder was 

used to record membrane potentials continuously, and a Digidata 1200 system with pCLAMP 

(version 5.5 or 6) software (Axon Instruments) was used for data acquisition and analysis. Most 

recordings were obtained from cells with a stable resting membrane potential (more negative than -55 

mV) and with overshooting action potentials. The protocol for assessing the effects of KA receptor 

agonists and antagonist on synaptic responses was as follows. Monosynaptic and polysynaptic 

excitatory postsynaptic potentials (EPSPs) in SG neurons were evoked by orthodromic electrical 

stimulation of primary afferent fibers in the lumbar dorsal root (L4 and/or L5) using a bipolar 

platinum wire electrode or glass suction electrode (with the cathode internal). Single shocks at a 

fixed suprathreshold strength (0.01-0.5 ms pulses, 3-35 V), repeated at 2-min intervals, were given for 

at least 10 min before, during (2 min), and for a 20-30-min period after bath administrations of 

chemicals. This frequency of stimulation was chosen for sampling data because it did not result in 

response facilitation or depression. A stimulus intensity that yielded a 5-15 mV EPSP was chosen to 

standardize the baseline synaptic strength across slices, and it was below threshold for eliciting an 

action potential in most of the slices chosen for study. The stimulus intensity necessary to activate 

AS and C fibers and the afferent fiber conduction velocity, were determined by extracellular 

recording of compound action potentials from longitudinal spinal slice-dorsal root-dorsal root ganglia 

preparations in the previous experiments (Kangrga and Randic, 1991). The classification of EPSPs in 

relation to the primary afférents activated, was done solely on the basis of conduction velocity, which 

was calculated either by measuring the distance between the stimulating electrode and the recording 

site on the dorsal root and dividing by the conduction latencies of action potentials recorded, or from 

the latency of evoked EPSPs and the distance from the stimulating electrode to the recording site. 

Primary afférents conducting at velocity above 15 m/s were classified as AP (Park et al., 1999), 
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whereas those conducting between 1.5 and 15 m/s were classified as AS, and those conducting below 

1.5 m/s as C fibers. The minimum stimulus intensities and durations used to activate AS and C fibers 

were 3 V/0.1 ms and 5 V/0.5 ms, respectively. Stimulation of dorsal roots led to generation of an 

EPSP. With small stimulus strength this EPSP was graded in amplitude, had a fixed latency and 

monophasic decay. As the stimulus strength was increased, however, a later slow polysynaptic 

component(s) was apparent. In order to discriminate between monosynaptic and polysynaptic EPSPs, 

two experiments were carried out. (1) Identification of the AS- or C-fiber-evoked EPSPs as 

monosynaptic was based on their constant latencies and absence of failures with a repetitive 

stimulation at frequency of 10-20 Hz (Randic et al., 1993) (2) The latency of these EPSPs remained 

constant in the presence of a high concentration of divalent cations (4 mM Ca2+, 8 mM Mg" ), the 

procedure that has been shown to suppress polysynaptic EPSPs by decreasing neuronal excitability. 

These findings contrast with the properties of dorsal root-evoked polysynaptic EPSPs. The 

presumably polysynaptic EPSPs had variable latencies and showed failures with high-frequency 

stimulation and with an external solution containing high divalent cation concentrations. Moreover, 

the shapes and amplitudes of polysynaptic EPSPs were variable in different trials when dorsal roots 

were stimulated at a constant intensity. Input resistance was measured at 2-min intervals by passing a 

hyperpolarizing current pulse of 0.05 nA across the cell membrane and measuring the voltage 

deflection produced. The current values were of sufficient duration (200-300 ms) to fully charge the 

membrane capacitance. Bridge balance was monitored throughout experiments and corrected when 

necessary. To reduce the increased spontaneous synaptic activity and subsequent action potential 

firing due to the removal of synaptic inhibition, the Mg2+ concentration in the supervising solution 

was increased to 3 mM in some of the experiments where bicuculline and strychnine were applied to 

block the G ABA* and glycine receptors. 

In the synaptic plasticity study, evoked-EPSPs, test pulses were repeated at 2 min intervals during 

control period (10-30 min) giving half maximal amplitude of EPSPs, and the 30 - 100 min period 

after conditioning high-frequency stimulation (HPS; 3 tetani of 1 s duration each at 100Hz and 10s 

intervals; at 30 V and 0.5 ms duration). Neurons showing long-term potentiatin (LTP) or long-term 

depression (LTD), respectively, were grouped on the basis of at least 20% increase or decrease, in the 

amplitude of the synaptic response, following high-frequency stimulation (Randic et al., 1993). 

Summary graphs were obtained by normalizing each experiment according to the average value of all 

points on the 10—30 min baseline prior to HPS. 

Whole-cell voltaee-clamp recording. For recording synaptic currents from substantia gelatinosa (SG, 
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recognized as a translucent band in lamina H of spinal DH) neurons, whole-cell voltage-clamp 

recordings were made with an Axopatch 200B (Axon Instruments) or EPC-7 (HEKA) amplifier under 

blind condition in external solution (in mM: 125 NaCl, 2.5 KCl, 2 CaCl,, I MgCl,, 1.25 NaH,P04, 26 

NaHC03, 25 glucose, pH 7.4; perfusion rate of 3-4 ml/min) at 33-34°C. Bicuculline methoiodide 

(BMI, 10-20 |iM), strychnine (2 |iM) and D-(-)-2-amino-5-phosphonopentanoic acid (DAP5, 50-100 

pM) are included to the external solution in experiments indicated. Borosilicate glass patch pipettes 

(6-12 Mfi) were filled with internal solution (mM: 140 CsMeSQ», 10 Na-HEPES, 10 EGTA, 2 NaCl, 

1 CaCl,, 2 Tris-ATP, 0.3 Tris-GTP, 5 QX314, pH 7.2, 295-300 mOsm). For voltage-clamp 

recordings, the capacitative current was electronically canceled, and the series resistance was 

measured (about 8-20 MQ) directly from amplifier and compensated by 70%. The recording was 

terminated if the series resistance changed by more than 20%. Excitatory postsynaptic currents 

(EPSCs), evoked by electrical stimulation of dorsal roots (0.1-0.5 ms pulses of 3-30 V at 0.033 Hz) 

using bipolar platinum wire electrode, were filtered at 2 kHz and sampled at 10 kHz (Digidata 

1200A) and stored on a computer programmed with pCLAMP (version 8, Axon Instruments) 

software. For I-V relationships of synaptic responses, EPSCs were evoked at each potential ranging 

from -60 mV to +40 mV (20-mV increments), and the peak amplitude of EPSCs was measured to 

plot against each potential. If EPSC amplitude at positive potentials fell below the extrapolated line, it 

was considered an inwardly rectifying I-V relationship. The rectification index (RI) of the current-

voltage (I-V) relationship was defined as the ratio of the EPSC peak amplitude at + 40 mV to the 

predicted linear value at +40 mV (extrapolated from linear fitting of the current at the negative 

potentials; Liu and Cull-Candy, 2000). Junction potentials were not corrected. 

For miniature EPSC (mEPSC) recordings, 0.5 gM tetrodotoxin ( I I X), 50-100 fiM D-AP5 (in 

some experiments), 5 fiM bicuculline methoiodide, and 2 fiM strychnine were included in the 

perfusing solution. Borosilicate glass patch pipettes (6-12 M MQ) were filled with internal solution 

(mM: 11'5 K^-gluconate, 5 KCl, 0.5 CaCl,, 2 MgCl,, 5 EGTA, and 5 HEPES; pH 7.2, 295-300 

mOsm). Whole-cell patch-clamp recordings from SG cells were performed using the 'blind method' 

(Blanton et al., 1990). Neurons were voltage clamped at -70 mV using the Axopatch 200B amplifier 

(Axon Instruments), and series resistance was compensated by 60-70%. Access resistance was 

monitored continually and neurons discarded if this parameter changed by more than 20%. mEPSCs 

were filtered at 2 kHz, sampled at 10 kHz (Digidata 1200) and stored onto a Gateway EV700 

computer programmed with pCLAMP (version 8, Axon Instruments) software. Analysis of mEPSCs 

was performed by the use of the Mini Analysis Program (Synaptosoft, Leonia, NJ). All records were 

fitted manually by screening through and picking events from the digitized data. The whole data file 
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was fitted to check for stability of the recordings. Two- to 3-min stretches of data were used for 

mEPSC frequency analysis. Data are presented as the mean t SEM. Parameters were compared by 

the use of the Student's unpaired t test or the Wilcoxon signed rank test. 

Chemicals. Chemicals used and their sources were as follows: [(RS)-2-amino-3-(3-hydroxy-5-

/er/-butylisoxazol-4-yl)] propionic acid (ATPA) or (RS)-2-amino-3-(5-/er/-butyl-3-hydroxy-4-

isoxazolyl) propionic acid (Vignes et al. 1998), (-)-bicuculline methoiodide, and strychnine 

hydrochloride from Sigma (St. Louis, MO, USA); (2S)-3[[(lS)-l-(3,4-dichlorophenyl)ethyl]amino-2-

hydroxypropyl] (phenylmethyl) phosphinic acid (CGP 55845A), a gift from Novartis Pharma AG 

Research, Basel, Switzerland; l-(4-aminophenyl)-3-methylcarbamyl-4-methyl-3,4-dihydro-7,8-

methylenedioxy-5H-2,3-benzodiazepine (GYKI 53655), a gift from Dr. Antal Simay (IVAX Drug 

Research Institute, Budapest, Hungary); 6-cyano-7-nitroquinoxaline-2,3 -dione (CNQX), D-(-)-2-

amino-5-phosphonopentanoic acid (D-AP5), (2S,3S,4R)-carboxy-4-(l-methylethenyl)-3-

pyrrolidineacetic acid (kainic acid), (S)-a-methyl-4-carboxyphenyl glycine (MCPG), and 2,3-dioxy-

6-nitro-l,2,3,4 tetrahydrobenzero-7-sulphanoylbenzo[f]quinoxaline-2,3-dione (NBQX), all obtained 

from Tocris Cookson (Bristol, UK) (3S,4aR,6S,8aR)-6-(4-carboxyphenyl)methyl-

l,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid (LY 382884) was a gift of Lilly 

Research Laboratories, Eli Lilly and Co. (Indianapolis, IN, USA). All solutions were freshly 

prepared every day from stock solutions that were stored at -20°C. Drugs were dissolved in 

oxygenated recording solution immediately prior to use and applied to the slices in known 

concentrations by addition to the superfusing medium. All compounds were applied by addition in 

the perfusing medium, and each neuron served as its own control. Drug-containing solution entered 

the recording chamber within 30 s of changing solutions, with complete exchange occurring within 3 

min. 

Data analysis. mEPSC and events in the baseline noise were detected and measured using Mini 

Analysis Software (Synaptosoft). mEPSCs were detected automatically using a threshold-crossing 

algorithm, and their frequency, amplitude, and kinetic parameters analyzed. At least 250 events were 

analyzed for each cell under each condition. Kinetic analyses of mEPSC properties included: peak 

amplitude, rise time from 10 to 90% peak amplitude, decay time constant (decay t), and duration. 

mEPSC duration was measured as the time from 10% of peak current to 90% return to baseline. A 

noise histogram was generated from the baseline current during periods containing no synaptic 

events, and a Gaussian distribution was fitted to the histogram to determine the SD of baseline noise. 

Synaptic events were selected automatically by a threshold-crossing algorithm, with detection level 

set at, or greater than, two times the SD of baseline noise (Datapac in, Run Technologies, Irvine, 
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CA). To test whether kainate modifies the amplitude or frequency of miniature synaptic currents, 

cumulative probability histograms for amplitude and interevent intervals were generated. A paired 

Student's /-test was used for comparison of EPSC amplitudes and statistical significance of the 

results. The nonparametric Kolmogorov-Smirnoff test (SYSTAT 7.0, SPSS, Chicago) was used to 

assess the significance of shifts in cumulative probability distribution of interevent interval. For 

comparison of amplitude distributions, histograms were constructed with events categorized into 2 pA 

bins. Data are presented as mean ± standard error of meant (s.e.m.), and statistical significance 

assessed using Student's t test (p<0.05 and p<0.01 were considered significant and indicated in the 

figures by * and **, respectively), x2 tests were used to evaluate significance in differences between 

means or distributions, respectively. P<0.05 was considered as significant. 

Table 1. Some information on mutant mice used. 

Mutant Mice ES cell line Blastocysts Providers References 

GluR2 129 SvEv C57BL6J Salk Institute 
Personal communication 

B. Vissel 

with Dr. 

GluR5 129 SvEv 129 SvEv Salk Institute Mulle et al., 2000 

GluR6 129 SvEv C57B16J Salk Institute Mulle et al., 1998 

GIuR5/6/KA2 129 SvEv C57B16J Salk Institute 
Personal communication 

G. T. Swanson 

with Dr. 
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CHAPTER 3. AMPA RECEPTOR 

Enhanced LTP of primary afferent neurotransmission in mice deficient in the AMP A 

receptor GluR2 

1. Introduction 

a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors 

(AMPARs) mediate the majority of fast excitatory neurotransmission in the mammalian central 

nervous system, including the spinal cord (Gerber and Randic, 1989; Yoshimura and Jessell, 1990). 

AMPARs are assembled from the four subunits, GluRl through GluR4, either alone or in various 

combinations (Hollmann and Heinemann, 1994). Different assemblies of subunits confer specific 

functional properties on the channel: for example, AMPARs assembled without GluR2 subunit or 

with its unedited form exhibit inwardly rectifying current-voltage (I-V) relation and high Ca21-

permeability (Hollmann et al., 1991; Bumashev et al., 1992). 

Ca2*-permeable AMPARs have been demonstrated in a subpopulation of the cultured embryonic 

spinal dorsal horn (DH) neurons (Gu et al., 1996) or of young rat spinal DH neurons using agonist-

induced cobalt loading immunocytochemistry (Engelmann et al., 1999). In addition, a higher 

percentage of postsynaptic AMPARs were immunopositive for GluRl than for GluR2 in DH CI 

glomeruli (main endings of unmyelinated afferent fibers; Popratiloff et al., 1996), suggesting that 

AMPARs lacking GluR2 may participate in synaptic transmission between primary afferent fibers 

and DH neurons. However, an in situ hybridization study showing high expression of GluR2 subunit 

mRNA in the spinal DH indicated a prominent existence of Ca2+-impermeable AMPARs in the spinal 

SG neurons (Toile et al., 1993). 

Therefore, to study the role of Ca2+-permeable AMPARs in the neurotransmission and the plasticity 

of sensory excitatory synaptic transmission in the spinal DH, we used mutant mice lacking the GluR2 

subunit. 

2. Results 

Rectifying Properties of AMPA Receptors in the Spinal Cord Neurons 

Whole-cell patch-clamp recordings from SG neurons in transverse spinal slices revealed no 

significant difference between wild-type and GluR2 mutant mice in resting membrane potential (-61.8 
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± 2.7 mV versus 59.9 ± 1.7 mV ; P = 0.89) and input resistance (204.2 ± 29.3 versus 230.9 ± 49.3; P = 

0.62), respectively (Table I). 

To examine the effect of genetic deletion of GluR2 subunit on synaptic membrane properties, we 

established I-V relationships of AMPAR-mediated EPSCs evoked by electrical stimulation of dorsal 

roots in wild-type or GluR2 mutant slices. Also, to quantify the degree of rectification, we calculated 

the RI of EPSCs, defined as the ratio of EPSC amplitude at +40 mV divided by the predicted (linear) 

value at +40 mV extrapolated from linear fitting of EPSCs (Liu and Cull-Candy, 2000). In a summary 

graph (Fig. I A) from six wild-type SG neurons (five mice) recorded in control bath solution, I-V 

relation of EPSCs was almost linear (mean RI = 0.85 ± 0.08). However, a graph summarized from 

eight GluR2-Z- SG neurons (four mice; Fig. IB) recorded in the same control solution exhibited 

significantly stronger inward rectification (mean RI = 0.37 ± 0.06, P < 0.01). To further eliminate the 

contribution of GABAa, glycine and N-methyl-D-aspartate receptors (NMDARs), we established I-V 

relationships of EPSCs in the presence of 10-20 pM BMI, 2 pM strychnine and 50-100 |iM DAP5. 

Under this condition, six wild-type SG neurons (five mice) showed from slight (RI = 0.6) to strong 

(RI = 0.05) inward rectification, resulting in inwardly rectifying I-V relationship in the summary 

graph (mean RI = 0.41 ± 0.08, Fig. 1C). However, all six GluR2-Z- SG neurons (four mice) produced 

strong inward rectifications in I-V relation (Fig. ID). The mean RI from them (0.07 ± 0.03) was 

significantly decreased when compared with that of wild-type group in the presence of BMI, 

strychnine and DAP5 (P < 0.01), or that of GluR2-/- group in the control bath solution (P < 0.01) 

(Fig. IE). Because the I-V relationship and the RI are closely correlated with the Ca2+-permeability 

(Isa et al., 1996) and the subunit composition of AMPAR channels (Seeburg et al., 1998), these 

results indicate that the Ca2+-permeability through AMPARs expressed on the postsynaptic membrane 

of SG neurons may efficiently be increased due to the genetic deletion of GluR2 subunit. 

Enhanced LTP of primary afferent neurotransmission in mice deficient in the AMPA receptor 

GluR2 subunit 

It has been shown that AMPARs can mediate a transient change in synaptic strength via 

postsynaptic Ca2+ influx through the receptor channels in the cultured spinal cord DH neurons, and 

LTP in hippocampal and amygdala slices (Gu et al., 1996; Jia et al., 1996; Mahanty and Sah, 1998; 

Randic et al., 1993). Since mRNA transcripts of GluR2 subunit are highly expressed in the spinal SG 

area (Tolle, 1993), we decided to study the role of Ca2+-permeable AMPARs in synaptic plasticity at 

primary afferent fiber-SG neuron synapses by using mice deficient in the AMPAR GluR2 subunit. On 

the basis of previous indication, that LTP at the primary afferent fiber synapses onto SG cells is 
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mediated postsynaptically by Ca2+ influx through NMDARs (Randic et al., 1993), we hypothesized 

that Ca2+ influx through Ca'-permeable AMPARs may be sufficient for the induction of NMDAR-

independent LTP. In order to test this idea, we studied LTP induction at the primary afferent fiber-SG 

synapses in spinal slices of wild-type or GluR2 mutant mice either in the absence or in the presence 

of the NMDAR antagonist DAP5. 

To investigate the synaptic plasticity in the spinal cord, we recorded EPSPs evoked by electrical 

stimulation of dorsal roots. Tetanic stimulation of primary afferents (100Hz for Is, delivered 3 times 

at 0.1 Hz, HPS) was applied to induce long-term potentiation (LTP) or long-term depression (LTD) in 

the spinal cord slices obtained from adult (2-4 months old) wild-type and GluR2 mutant mice. As 

shown in Fig. 2A-B, tetanic stimulation induced a long-lasting increase in synaptic strength in the 

wild-type slices. The normalized EPSP peak amplitude for wild-type mice at 20 min after tetanus was 

126 ± 9 % of the averaged baseline amplitude before stimulation (ten slices from ten mice). In slices 

obtained from GluR2 mutants, the degree of long-lasting increase in the synaptic strength was 

enhanced (The normalized EPSP amplitude for GluR2 mutant mice at 20 min after tetanus was 177 ± 

22 % of averaged baseline amplitude, twelve slices from twelve mice, P<0.01). In addition to LTP, 

subpopulation of neurons showed LTD of EPSPs peak amplitude following HFS in both wild-type 

(Fig. 2C-D; +/+, nine slices from nine mice; at 20 min after HFS, 57 ± 11 % of the averaged baseline 

amplitude; P<0.05) and GluR2 mutant (-/-, seven slices from seven mice; at 20 min after HFS, 62 ± 9 

% of the averaged baseline amplitude; P<0.05). However, the magnitude of LTD was not 

significantly different between two groups (P>0.05). 

As the induction of LTP at primary afferent synapses critically depended on the activation of 

NMDARs (Randic et al., 1993), we investigated whether the Ca2+ permeable AMPARs can substitute 

for NMDARs during LTP induction. As shown in Fig. 3A, in the presence of 50—100 gM DAP5, a 

competitive NMDAR antagonist, HFS failed to induce LTP in wild-type slices, rather producing 

significant LTD (+/+, eight out nine slices from nine mice; at 20 min after HFS, 68 ± 15 % of the 

averaged baseline amplitude; P<0.05). However, most of GluR2 mutant slices (-/-, seven out of eight 

slices from eight mice) exhibited significant LTP (at 20 min after HFS, 123 ± 15 % of the averaged 

baseline amplitude; P<0.05), indicating NMDAR-independent LTP 

Although NMDARs are the primary source of Ca2+ entry into dendritic spines, activation of 

dendritic voltage-dependent Ca2+ channels also substantially raises Ca2+ levels and can generate LTP, 

short-term potentiation, or LTD. Hence, we investigated whether high voltage activated Ca2> (HVAC) 

channels are involved in the NMDAR-independent LTP in GluR2 mutant mice. Fig. 3B summarizes 

LTP induced in the presence of 50 pM DAP5 and 10-20 gM nifedipine, a HVAC channel antagonist, 
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or nimodipine in five out of six slices obtained from six GluR2 mutant mice at 20 min after HFS, 

125 ± 7 % of the average baseline amplitude; P<0.05), and LTD in seven out of nine slices from nine 

wild-type mice (+/+: at 20 min after HFS, 81 ± 9 % of the averaged baseline amplitude; P<0.05), 

indicating that HVAC channels do not play a role in the NMDAR-independent LTP. On the other 

hand, further addition of 10 pM NBQX or 10-20 |iM CNQX to perfusing solution abolished all 

synaptic responses, implying that the residual LTP in GluR2 mutant mice is likely mediated by the 

Ca2+ influx through the synaptic activation of AMPARs. Figure 3C is a histogram showing the 

distribution of number of SG neurons responding to tetanic stimulation in the presence of DAP5 or 

DAP5 + HVAC antagonists (nifedipine/nimodipine) with LTP and LTD, obtained from eighteen 

wild-type (+/+) neurons and fourteen mutant neurons. The probability of the distribution between 

wild-type and GluR2 mutant mice was significantly different in both DAP5 alone and DAP5 + 

HVAC antagonists (%2 test, P<0.01). 

3. Discussion 

Our data obtained from adult GluR2 mutant mouse slices are compatible with the suggestion that 

Ca2+-permeable AMPARs can induce LTP of excitatory synaptic transmission in the spinal cord DH 

on the basis of the finding that Ca2>-permeable AMPARs are expressed at synapses on cultured 

embryonic DH neurons and can trigger synaptic potentiation there (Gu et al., 1996). Hence, in the 

absence of GluR2, LTP and Ca2+ permeability are increased. The data also show that Ca2+ influx via 

L-type Ca2+ channels is not involved in LTP induction in GluR2 mutant mice. Therefore, the GluR2 

subunit may play a crucial role in regulating both Ca2+ influx and LTP. The fact that GluR2 mutant 

mice exhibit widespread impairment in behavior suggests that GluR2 is also critical for normal brain 

function. A previous finding demonstrated that isolated hippocampal CA1 neurons increased Ca2+ 

permeation and that LTP was markedly enhanced in the CA1 region of hippocampal slices (lia et al., 

1996). These data raised the possibility that Ca2+ influx via AMPARs alone, might be able to induce 

long-lasting increases in synaptic efficacy at primary afferent-SG neuron synapses, suggesting an 

important and unexpected role in synaptic plasticity (Jia et al., 1996; Vissel, 2001). 

Relative CaI+ Permeability of AMPA Receptors 

It has been shown in vitro that AMPARs containing the Q/R edited GluR2 subunit exhibit lower 

Ca2+ permeability and distinct gating properties, compared with receptor channels assembled without 

this subunit (Bumashev et al., 1992; Hollmann and Heinemann, 1994). Although we have not 
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performed ion permeability studies, a previous report (Jia et al., 1996) showed that the loss of the 

GluR2 subunit in individual CA1 pyramidal neurons from GluR2 mutant mice resulted in a nine-fold 

increase in a relative Ca2+ permeability following kainate application when compared with that of 

control mice. Indeed, this shift was similar in magnitude to that observed for Ca2+-permeable 

NMDARs (Koh et al., 1995). These results, together with observations in hippocampal slices from 

GluR2 editing-deficient mice (Brusa et al., 95), support a crucial role for the GluR2 subunit in 

inhibiting Ca2+ influx via AMPARs in vivo. 

Naturally, the degree of the expression of Ca2+-permeable AMPARs in the spinal DH is 

variable, depending on DH sub-regions, types of terminating fibers, or neuronal properties (Gu et al., 

1996; Popratiloff et al., 1996; Spike et al., 1998; Engelmann et al., 1999). Therefore, spinal slices 

prepared from mice genetically engineered to delete functional GluR2 subunit may have even 

constant or maximized condition for the expression of Ca2+-permeable AMPARs: i.e., virtually, all 

AMPARs are Ca2+-permeable. This expectation was likely confirmed by our result that all SG 

neurons obtained from GluR2 mutant mice showed strong inward rectification in I-V relationship of 

AMPAR-mediated synaptic currents. 

GluR2 Subunit and Synaptic Plasticity 

The magnitude of the rise in postsynaptic Ca2+ during LTP induction, and the level of NMDAR 

function, have been shown to have significant effect in the generation of LTP (Malenka and Nicoll, 

1999). Previous reports also showed that trans-ACPD, a metabotropic glutamate receptor agonist, 

enhanced NMDA currents in SG cells, and when applied with a weak tetanus, incapable of inducing 

LTP by itself, generated LTP (Aniksztejn et al., 1992; Bashir et al., 1993; O'Connor et al., 1994, 

1995). Since NMDAR function is strongly modulated by kinase activity (Gerber et al., 1989; 

MacDonald et al., 1989; Chen and Huang, 1991, 1992; Kelso et al., 1992), it is conceivable that in 

GluR2 mutants the Ca:> influx from AMPARs could modify the NMDAR function through protein 

phosphorylation or direct binding to calmodulin (Ehlers et al., 1996). However, this is unlikely, since 

in GluR2 mutant mice, our data did not reveal any change in the NMDAR function (Jia et al., 1996). 

The enhanced LTP in GluR2 mutants was likely reconstituted by the addition of NMDA-independent 

LTP in GluR2 mutants to NMDA-dependent LTP in wild-type mice. In addition, LTD, another 

NMDA-dependent phenomenon, was not altered. These findings strongly support the hypothesis that 

Ca2+ influx, via AMPARs lacking the GluR2 subunit, is not modifying the NMDA component, and is 

sufficient for producing LTP. 



30 

Several studies have suggested the presence of NMDAR-independent LTP in the CAl-Schaeffer 

collateral synapses. Perfusion of a high extracellular Ca2+ solution induces LTP (Turner et al., 1982), 

which is not blocked by DAP5. NMDAR-independent LTP was also induced in CA1 by using a 200 

Hz, rather than the usual 100 HZ, tetanic stimulation (Grover and Taylor, 1990). Postsynaptic 

injection of BAPTA, a Ca2+ chelator, or nifedipine, the L-type Ca2+ channel antagonist, blocked this 

form of LTP, suggesting that in the presence of DAP5, HVAC channels provided the necessary Ca2* 

influx required for LTP at the Schaffer collateral synapses. Such a mechanism could underlie the 

NMDAR-independent enhancement in GluR2 mutants. However, when we perfused slices with 

nifedipine, in the presence of DAP5, the residual LTP was not affected, thereby indicating the lack of 

L-type HVAC channel involvement in NMDA-independent LTP in GluR2 mutant mice. In addition, 

the prevention of membrane depolarization during HFS, by keeping cell at holding potential of -60 

mV in the whole-cell patch clamp recordings was not able to block the residual NMDAR-independent 

LTP of EPSCs recorded from GluR2 mutant neurons, in the presence of DAP5 (121.1 ± 5.4 % of 

averaged baseline at 16-20 min, n=4; data not shown), also indicating no involvement of any other 

membrane depolarization-activated channels in the NMDAR-independent LTP. Together, our data 

support the possibility that Ca2* influx via AMPARs devoid of GluR2 subunit, is sufficient to induce 

LTP in a NMDAR-independent manner. 

On the other hand, the locus of the action of Ca2*-permeable AMPARs in the induction and 

expression of LTP in GluR2 mutant mice, i.e. 'presynaptic' or postsynaptic' is questionable. 

Although the presynaptic mechanism can not be completely excluded, the finding that there is no 

difference between wild-type and GluR2 mutant mice in a paired-pulse depression (the ratios of 2nd 

EPSP to 1st EPSP spaced 100 ms were 0.62 ± 0.10 (n=6) and 0.62 ± 0.06 (n=8) for wild-type and 

GluR2 mutants, respectively), which is one of parameters frequently examined in testing for 

presynaptic locus of an action (Gerber et al., 2000), indicates that the presynaptic locus of Ca2" influx 

through the Ca2*-permeable AMPARs is not a liable mechanism. 

Furthermore, it is interesting to note that LTP in GluR2 mutant slices was not saturable, thus 

indicating that the mechanisms underlying LTP induction are altered. One reason for normal 

saturable LTP could be that Ca2"1" influx through the NMDAR channel activates calmodulin, which is 

known to bind and inactivate the NMDAR channel. Therefore normal LTP may be self-limiting. 

However, in GluR2 mutant mice, the additional Ca2* influx will not inactivate the AMPAR channel, 

thereby leading to an ever-increasing LTP at higher stimulation intensities. Alternatively, downstream 

signaling components may limit LTP in normal animals, fa GluR2 mutant mice, the additional Ca2* 

could activate kinases that are normally rate-limiting to generate non-saturable LTP. 
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Finally, it is noteworthy in relation to the functional relevance of Ca2+-permeable AMPARs in 

nociceptive transmission, that the recent findings from behavioral tests indicated that tactile allodynia 

after thermal injury, and hyperalgesia after formalin injection or carrageenan injection, are blocked or 

decreased by Ca2+-permeable AMPAR antagonists, Joro spinder toxin or philanthotoxin, without any 

side effects (Sorkin et al., 1999 and 2001). In addition, a decrease in the GluR2 expression in the 

spinal DH lamina IH following dorsal rhizotomy, which can cause radicular pain, was reported 

(Carlton et al., 1998). Consistent with these behavioral data, our result of the presence of the 

enhanced LTP and the NMDAR-independent LTP, may be able to provide the underlying cellular 

mechanism for the certain types of pain behavior, and further, a useful clue for a molecular target to 

treat chronic pain. 

Table. 1. Properties of membrane or synaptic responses recorded by intracellular or whole-cell recordings from 

the spinal dorsal horn neurons 

Intracellular recordings _ 
-/-

Mean ± s. e. m. n Mean ± s. e. m. n 

Resting membrane potential (mV) -72.2 ± 1.3 39 -73.4 ± 1.4 31 

Input resistance (Mfi) 212.9 ±25.1 23 215.6 ±31.2 27 

EPSPthreshold (V) 4.7 ±0.3 30 5.4 ±0.5 20 

Test Stimulus for EPSP (V) 6.2 ±0.4 34 7.0 ±0.5 30 

monoEPSP (mV) 9.8 ±1.1 17 8.2 ±0.9 16 

Conduction velocity of A-EPSPs (m/s) 4.4 ±0.6 16 3.3 ±0.4 16 

Conduction velocity of C-EPSP (m/s) 0.5 ±0.05 6 0.3 ±0.02* 3 

Whole-cell recordings 

Resting membrane potential (mV) -61.8 ±2.7 8 59.9 ± 1.7 7 

Input resistance (Mfi) 204.2 ±29.3 10 230.9 ±49.3 11 

Statistical significance, which compared with the value in +/•+% is indicated by an asterisk: *P<0.05. Voltage (V) 

to determine the threshold of EPSPs and for test stimulus was given at the duration of 0.1 msec. 



Fig. 1. Rectification properties of synaptic currents in substantia gelatinosa (SG) neurons. 

(A and C) Examples of primary afferents-evoked EPSCs from two wild type (+/+) SG neurons at +40 

and -60 mV, showing reduced currents at positive potentials (left panels). Electrical stimulation of 

primary afferents-evoked EPSCs that showed a continuum of t-V relationships (right panels), from 

essentially linear (A, rectification index (RI) = 0.85 ± 0.08, n = 6 slices from 5 mice) in a control 

solution to inwardly rectifying I-V plots (C, RI = 0.41 ± 0.08, n = 6 slices from 4 mice) in the 

presence of 50 pM DAP5, 10 pM BMI and 2 pM strychnine. EPSCs were evoked at each potential 

(20 mV increments). Solid line follows the data points; dashed line at positive potentials represents 

extrapolated fit for EPSCs behaving ohmically. 

(B and D) Synaptic currents (left panels) recorded from GluR2 mutant (-/-) SG neurons in control 

solution (B) and in the presence of 50-100 pM DAP5, 10 pM BMI and 2 pM strychnine (D). By 

contrast with wild-type neurons (A and C), the I-V relation for the peak of evoked EPSCs in mutant 

SG neurons (B and D) is strongly inwardly rectifying. In mutant mice showing predominantly 

inwardly rectifying I-V relationship, RIs were significantly reduced in both control bath solution (B, 

RI = 0.37 ± 0.06, n = 8 slices from 4 mice, P < 0.01) and DAP5 + BMI + strychnine solution (D, 0.07 

± 0.03, n = 6 slices from 4 mice, P < 0.01), when compared with wild-type mice (A and C). 

(E) A scatter diagram representing RIs of twelve wild-type and fourteen GluRl mutant (-/-) neurons. 

Open circles indicate neurons examined in a control solution, whereas triangles show neurons in the 

presence of DAP5, BMI and strychnine. The closed circles and triangles show the mean RI ± SEM 

for each group. 
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Fig. 2. LTP and LTD of excitatory synaptic transmission at primary afferent synapses with neurons in 

the substantia gelatinosa (SG). 

EPSPs recorded intracellular^ (sharp microelectrodes) in the SG of spinal cord slices obtained from 

2-4 month-old wild type (+/+) and mutant (-/-) GluR2 littermates. Inset shows the approximate 

location of tested SG cells. 

(A) The superimposed traces displayed are individual synaptic responses in wild-type and GluR2 

mutants taken before (trace /) and during the long-term potentiation (trace 2). Sampled traces are the 

averages of four to six consecutive EPSPs around the corresponding time point indicated by the 

arabic numeral on the graph. 

(B) Summary graphs (mean ± SEM) showing the magnitude and the time course of LTP induced by 

stimulation consisting of a burst of 100 pulses at 100 Hz, repeated three times at 10 s intervals. The 

result was averaged from twelve slices from twelve GluRl mutant (closed circles) and ten slices from 

ten wild type mice (open circles). In the absence of GluR2, LTP was increased. 

(C) The superimposed traces are individual synaptic responses in wild-type and GluR2 mutants taken 

before (trace I) and during the long-term depression (trace 2). 

(D) The graphs show summarized results (mean ± SEM) averaged from seven slices from seven 

GluR2 mutant (closed circles) and nine slices from nine wild-type mice (open circles) that upon 

tetanic stimulation of high intensity developed LTD. However, the magnitude and time course of 

LTD was not different between mutant mice and wild-type mice. 
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Fig. 3. NMDA-independent LTP in GluRl mutant mice. 

(A) GluR2 mutant (-/-) mice exhibit NMDA receptor-independent LTP, whereas wild-type (+/+) 

mice display LTD. The plot summarizes LTP {closed circles) induced at time zero (arrow) in the 

presence of 50-100 gM DAP5 from seven slices (seven -A mice) and LTD (open circles) (recorded in 

the same solution) from eight slices (eight +/+ mice). The superimposed traces displayed above the 

graph are individual synaptic responses in wild-type and GluR2 mutants taken at the times indicated 

by arabic numerals. Inset shows the approximate location of tested SG cells. 

(B) The plot summarizes LTP induced in the presence of 50 gM DAP5 and 10-20 pM nifedipine or 

nimodipine in five slices obtained from five GluRl mutant mice, and LTD recorded in seven slices 

from seven wild-type mice. Data are expressed as mean ± SEM. Sampled traces (insets) are averages 

of four to six consecutive records of EPSPs obtained at the times indicated in the graph by the 

corresponding numbers. Bars indicate periods of application of each drug. 

(C) Summary histogram showing number of SG neurons responding to tetanic stimulation in the 

presence of DAP5 or DAP5 + HVAC antagonists (nifedipine/nimodipine) with LTP (closed bars) and 

LTD (open bars), obtained from eighteen wild-type (+/+) neurons and fourteen mutant (-A) neurons. 
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CHAPTER 4. KAINATE RECEPTOR 

Modulation of excitatory synaptic transmission in the spinal cord substantia gelatinosa region 

in mice deficient in the kainate receptor GluR5 or GluR6 subunit 

(A part of this chapter was submitted to The Journal of Neuroscience, as a paper by Dong-ho Youn, 

Stephen F. Heinemann and Mil]ana Randic, 2002) 

1. Introduction 

The substantia gelatinosa (SG), lamina II of the gray matter of the dorsal horn (DH) is the 

preferential site of termination of small-diameter primary afferent fibers that respond to noxious 

stimuli (Kumazawa and Perl, 1978; Light and Perl, 1979a, b; Sugiura et al, 1986, 1989; Yoshimura 

and Jessell, 1989, 1990; Randic et al, 1996; Gerber et al., 1989a,b, 2000a; Moore et al., 2000). The 

most superficial laminae of the DH are of fundamental importance for nociceptive transmission by 

virtue of the fact that it is here that most small-caliber myelinated (A8) and unmyelinated (C) fibers 

terminate. Lamina II is of particular interest as the sensory input to this area is almost entirely C-fiber 

in nature. The primary function of neurons in the SG is to integrate noxious afferent information 

arriving to this region via the high-threshold AS and C fibers. The SG cells function as excitatory and 

inhibitory intemeurons and regulate the output of projection neurons in other laminae of the DH 

(Willis and Coggeshall, 1991). 

Kainate receptors are composed of homomeric and heteromeric configurations of five cloned 

subunits: GluR.5-7 and KA1 and KA2 (Herb et al., 1992; Chittajallu et al., 1999). Kainate receptors 

are localized at both presynaptic and postsynaptic sites in the superficial laminae of the spinal cord 

DH (Toile et al., 1993; Petralia et al., 1994; Hwang et al., 2001). Kainate receptors in the postsynaptic 

membrane were shown to contribute to excitatory postsynaptic currents (Li et al., 1999), whereas 

kainate receptors on primary afferent neurons have been proposed to regulate glutamate release and 

excitatory synaptic transmission (Gerber et al., 1999; Kerchner et al., 2001b). 

It is assumed that the relative abundances of the mRNAs for the kainate receptor subtypes will 

reflect likely composition of the receptor complexes already expressed in the membrane. All five 

kainate receptor subunits are expressed to some extent in spinal cord neurons. While the vast 

majority of the high-affinity kainate receptors was accounted for by KA2 (79% for spinal cord 

neurons), these do not form functional receptor complexes on their own (Herb et al., 1992; Hollmann 

and Heinemann, 1994; Swanson et al., 1996). However, they can assemble with low-affinity 
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subunits, such as GluR5 and GluR6, to form functional heteromeric channels with unique properties 

(Herb et al., 1992; Howe, 1996; Swanson et al., 1996). 

In a recent report (Dai et al., 2002), responses of cultured rat spinal neurons to kainic acid (KA) 

have been related to the expression of kainate receptor subunits revealed by single-cell reverse 

transcription polymerase chain reaction (RT-PCR). Single-cell RT-PCR showed relative abundances 

of mRNAs for the kainate receptors GluR5, 6, and 7 of 38, 10, and 54% for spinal cord neurons, 

respectively. The relative abundance of KA1 and KA2 was 19 and 79% for spinal cord neurons, 

respectively. The most striking feature of results (Dai et al., 2002) is the relative abundance of GluR6 

and paucity of GluR5 in spinal cord neurons. Interestingly, it has recently been shown that, while 

PGR could detect the mRNAs for all kainate receptor subunits in cultured cortical neurons, only 

GluR6 and KA2 could be detected by Western blot (Janssens and Lesage, 2001). 

In spinal cord neurons, GluR5 and GluR7 were expressed to comparable extents (38 and 54%, 

respectively), though 4-5 times greater than GluR6 (10%). The likely combination is, therefore, 

GluR5 and/or GluR7 together with KA2. Although homomerically expressed GluR7 receptors are 

thought to be either not functional (Lomeli et al., 1992), or KA is of very low potency (Schiffer et al., 

1997), Cui and Mayer (1999) have recently demonstrated that heteromeric combinations of GluRS, 6, 

and 7 can form channels with distinct pharmacological and functional properties. The expression of 

GluRS together with KA2 is, therefore, likely to dominate the functional receptors in spinal cord 

neurons, while the presence of GluR7 is likely to exert a modulatory influence. 

Developmental regulation of kainate-type glutamate receptor expression in the rat spinal cord 

using in situ hybridization (Stegenga and Kalb, 2001) showed that the expression of many (GluRS-7, 

KA1) KA-type glutamate receptor subunits was higher during development and was either not 

detected or at low abundance levels by adulthood (Stegenga and Kalb, 2001). Low to moderate levels 

of GluRS mRNA were detected throughout the P2 spinal cord with slightly more robust expression in 

the SG. By P10, the signal was selectively present in the SG. GluRS mRNA levels were not detected 

in spinal cord tissue at age P22, or adult. Moderate levels of GluR6 signal were present throughout 

the P2 spinal cord, again with a slightly higher signal in the SG. At P10, 22 and adult ages, however, 

a definitive signal was not discernible for the GluR6 transcript. The mRNA signal for GluR7 was 

detectable at low levels throughout the spinal grey mater with a moderate to low signal around the 

central canal at the P2 spinal cord. By P10 the GluR7 signal was hardly detectable in the SG with all 

other regions being negative for GluR7 mRNA at P22. Moderate levels of the KA1 transcript were 

found at P2 spinal cord. The dorsal half of the spinal cord and the region surrounding the central 

canal display significant levels of KA1 mRNA. No mRNA from the KA1 transcript was detected in 
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the P22 spinal cord. The KA2 transcript was expressed widely within the developing spinal cord with 

moderate to high level expression detected within the SG. By P10 and 22, SG retained a moderate 

level of KA2 mRNA expression and no detectable signal throughout the remaining spinal grey matter. 

KA2 mRNA was not detected in the adult spinal cord. The precise spatio-temporal of expression of 

individual kainate receptor subunits implies an important role for specific combinations of subunits in 

developing neuron function. The ways in which such diversity is employed by neurons is not clear. 

In the spinal cord DH, kainate receptors play an important role in sensory transmission. At 

primary afferent synapses in the rat spinal cord DH, in addition to the modest number of postsynaptic 

kainate receptors that contribute to EPSPs evoked by high-intensity primary afferent fiber stimulation 

(Li et al., 1999), there are kainate (GluR5/6/7) receptors expressed presynaptically by dorsal root 

ganglion (DRG) neurons (Sato et al., 1993a; Petralia et al., 1994; Hwang et al., 2001) that have been 

proposed to suppress AMPA- and NMDA-mediated excitatory synaptic transmission through a 

presynaptic action that reduces glutamate release (Gerber et al., 1999; Kerchner et al., 2001b). Small-

diameter DRG neurons (Huettner, 1990), which include cells that carry nociceptive information to the 

spinal cord, are known to express functional kainate receptors (Davies et al., 1979; Agrawal and 

Evans, 1996; Lee et al., 2001). In addition, it was recently shown that DH inhibitory neurons express 

presynaptic kainate receptors that stimulate GABA and glycine release that may lead to suppression 

of inhibitory transmission in the DH (Kerchner et al., 2001a). The first of these functions in the brain 

has been well established, but the second remains controversial (Frerking and Nicoll, 2000; Lerma et 

al., 2001). 

In the present study, we used gene-targeted mice lacking GluRS, GluR6, or GluR5/6/KA2 kainate 

receptor subunits to determine the identity of the subunits comprising kainate receptors in the adult 

mouse spinal cord SG region. We have investigated the regulation by kainate receptors of the spinal 

excitatory synaptic transmission at AS- and/or C-primary afferent fiber-SG synapses, where we found 

that kainate receptors depress or potentiate the excitatory transmission. These studies lead us to 

conclude that the GluRS, but more importantly, GluR6 receptor subunit comprises kainate receptors 

that depress or potentiate primary afferent synaptic transmission to the spinal SG region. 

2. Results 

Conventional intracellular recordings of up to 7h were obtained from 179 substantia gelanitnosa 

(SG) neurons in transverse spinal cord slices of wild-type and mutant adult mice. In most of the 

experiments, each of the neurons recorded from was in a different spinal cord slice preparation. No 
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significant differences were revealed between wild-type and mutant mice in passive (resting 

membrane potential, input resistance) or active (stimulus threshold to evoke synaptic response, 

amplitude of evoked synaptic response, and conduction velocity) membrane properties (but see also 

Table 1). Single shock electrical stimulation of the primary afferent AS and/or C fibers in a L4 or L5 

dorsal root elicited monosynaptic and/or polysynaptic excitatory postsynaptic potentials (EPSPs) in 

SG cells that were suppressed by 50-100 gM GYKI 53655, GYKI 52466 or LY 300164, the AMPA 

receptor-selective antagonists, and 50 gM DAPS, an NMDA receptor antagonist, in a reversible 

manner, suggesting that they were primarily mediated by the AMPA/NMDA subtypes of glutamate 

receptor (Gerber et al., 1989a; Randic et al., 1993; Yoshimura and Jessell, 1990) (Fig. 1). 

Activation of kainate receptors inhibits AS- and C-primary afferent fiber-evoked excitatory 

postsynaptic potentials 

In agreement with the previous studies (Gerber et al., 1999; Kerchner et al., 2001b), we found that 

superfusion of slices with KA reduced the amplitude of primary afferent fiber-evoked EPSPs in a 

dose-dependent manner (0.1-10 gM; Fig. 2A, B). The depression of EPSPs in individual cells was 

consistently produced at the concentration of 3 gM KA (Fig. 2A, n = 19 slices from 18 wild-type 

mice). The peak depression had a latency of 3-5 min and the effect persisted for more than 20-30 min 

after the application of KA was terminated (Fig. 2A). When recording at resting membrane potential, 

application of 3 gM KA (2 min) caused a slow, dose-dependent and reversible membrane 

depolarization (5.6 ± 0.7mV) in 14 out of 19 neurons (Table 3). KA-induced depolarization recovered 

to control levels within 3-10 min after washout of KA. The depolarization also occurred in the 

presence of 1 gM tetrodotoxin (TTX) (6.5 mV, n = 2), a voltage-dependent Na+ channel blocker, 

indicating a direct postsynaptic action of kainate receptors on SG neurons. 

Besides KA, we also examined the effects of a low (0.3 gM) and moderate dose (1 gM) of domoic 

acd (DA), another more potent AMPA/kainate receptor agonist on AS- or C-primary afferent 

stimulation-evoked monosynaptic and polysynaptic EPSPs. Previous studies in the CA1 area of the 

hippocampus have reported that DA, when applied at a low dose of 0.2 gM, specifically activates 

kainate receptors (Bureau et al., 1999; Huettner, 1990). We, therefore, tested the effect of DA (0.3-1 

gM, 2 min) on the evoked AMPA receptor-mediated EPSPs recorded in SG cells. The decrease in the 

peak amplitude of EPSPs in the SG cells, receiving input from A and/or C-primary afférents, 

produced by DA was a dose-dependent in the concentration range tested (Fig. 2C). The DA-induced 

depression of EPSPs was associated with a dose-dependent and reversible membrane depolarization 

(3.26 ± 0.8mV for 0.3 gM, n = 3; 7.0 ± 2.3mV for 1 gM, n = 3). 
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In this set of experiments, we have also used a newly developed putative GluR5 subunit-specific 

antagonist, LY382884, to test its ability to reverse the depressant action of KA (3 pM, 2 min) on A-

and/or C-primary afferent fiber-evoked EPSPs. It has been shown that LY382884 antagonizes 

responses mediated by kainate receptors at concentrations below those that affect synaptic processes 

mediated by AMPA or NMDA receptors in the hippocampus (Bortolotto et al., 1999). In contrast to 

the result from the hippocampus, the inclusion of LY382884 (10 gM) to the bath solution depressed 

A- and/or C-primary afferent fiber-evoked EPSPs by 23% (n = 7 slices; Fig. 2D). Moreover, the 

evoked EPSPs, recorded in the solution containing LY382884, were depressed by KA (3 gM, 2 min) 

to a similar degree (18.1 ± 5.0 % inhibition in LY382884, n = 6 slices) when compared to the 

depression of the baseline EPSPs by this agent alone, but to a lesser degree when compared to the 

KA-induced depression in normal Krebs solution (P <0.01; Fig. 2D). In the presence of LY382884, 

the KA depression of EPSPs was accompanied by a similar degree of membrane depolarization (4.2 ± 

1.5mV, n = 4) to that seen in the Krebs solution. 

Although we have shown that KA depresses excitatory glutamatergic transmission in the SG, it is 

not known which type of primary afferents and intemeurons are the target of the KA action, because 

the SG neurons receive glutamatergic inputs from both of these sources (Yoshimura and Jessell, 

1989). To determine which synaptic inputs may be regulated by kainate receptors, we next examined 

the effects of KA (3 pM, 2 min) on Aô-fiber-evoked monosynaptic and polysynaptic EPSPs and 

EPSPs evoked in SG neurons by stimulating C-afferent fibers. All three types of EPSPs examined, 

were depressed in peak amplitude by KA, in all cells examined (Fig. 3A-C). However, the Aô-fiber 

polysynaptic and C-fiber-evoked EPSPs were depressed in peak amplitude by KA (3 pM) to a greater 

extent than the Aô-fiber monosynaptic EPSP (Aô-fiber monosynapic EPSP: to 69.3 ± 5.7% of 

control, n = 8 slices from 8 mice; Aô-fiber polysynatpic EPSP: to 45.8 ± 5.1%, n — 5 slices from 5 

mice, P<0.01; C-fiber-evoked EPSP: to 55.8 ± 5.0%, n = 7 slices from 7 mice, P<0.05; Fig. 3D, Table 

2). Moreover, we observed that activation of kainate receptors, besides depressing the amplitude of 

Aô-fiber polysynaptic and/or C-fiber-evoked EPSPs, caused a marked depression of the area of Aô-

fiber polysynaptic EPSP (Fig. 3E) and C-fiber-evoked EPSP (Fig. 3F). In addition, activation of 

kainate receptors enhanced the likelihood of synaptic failure in C-fiber EPSPs, which we defined as a 

stimulation event in which an EPSP was not detected above the baseline noise. An example of the 

synaptic failures caused by 3 gM KA on C-fiber-evoked presumed monosynaptic EPSP is illustrated 

in Fig. 4. In this cell, the effect of KA involved a reduction of the peak amplitude of the EPSP and 

also complete failures of transmission (Fig. 4, trace 2). 
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Effects of bicuculline and strychnine on modulation of synaptic responses by KA 

Given the importance of inhibitory processes in the temporal and spatial control of sensory 

responses in the DH (Malcangio and Bowery, 1996; Coggeshall and Carlton, 1997; Hwang et al., 

2001; Ribeiro de Silva and Coimbra, 1982; Todd, 1996), and a recent evidence of the presence of 

presynaptic kainate receptors in GABAergic and glycinergic intemeurons in the superficial laminae 

of the DH (Kerchner et al., 2001; Lee et al., 2002), in the present study we have investigated possible 

interaction of KA with inhibitory processes, mediated by G ABA* and glycine receptors. Glycine and 

G ABA are probably co-packaged in and co-released from spinal intemeurons (Burger et al., 1991; 

Christensen and Fonnum, 1991; Jonas et al., 1998). We tested the possibility that KA-induced 

depression of Aô-fiber-evoked monosynaptic, polysynaptic, and C-fiber EPSPs is caused by a long-

term change in the strength of synaptic inhibition by performing experiments in the presence of 

bicuculline (5 pM), CGP 55845 (10 pM), and strychnine (2 pM) to eliminate the GABAa.b and 

glycine receptor-mediated synaptic inhibition, respectively (Figs. 5-7). Moreover, by adding the 

group I and II metabotropic glutamate receptor antagonist (S)-a-methyl-4-carboxyphenyl glycine (S-

MCPG; 500 pM) to the perfusing medium, we also tried to exclude the possibility that KA-induced 

intemeuronal activity in the SG region could cause the release of a neuromodulator that acts 

heterosynaptically to depress excitatory synaptic transmission. 

First, we established dose-response curve for the effects of KA on primary afferent-evoked EPSPs, 

in the presence of 5 pM bicuculline and 2 pM strychnine ('cocktail'; Fig. 5A). As seen in Fig. 5A, 

KA modulated primary afferent-evoked excitatory transmission in a dose-dependent biphasic 

manner. Biphasic effect of KA was revealed with facilitation apparent at a low concentration (30 nM 

for 2 min; Fig. 19) and depression at a higher concentration (3 pM for 2 min; Fig. 5B, Table 2). The 

degree of KA (3 pM)-induced depression of EPSPs was significantly reduced when compared with 

that in a normal Krebs solution (Krebs solution: to 58.0 ± 3.9% of control; bic + strych cocktail: to 

74.7 ± 4.3% of control, n = 16 slices from 9 mice; P<0.01; Fig. 5C). Following washout of KA from 

the bath solution, thirteen out of sixteen slices showed almost full recovery in EPSPs, whereas in 

three slices no recovery was seen. In a representative neuron receiving polysynaptic input from A5-

primary afferent fibers, the second application of 3 pM KA, in the presence of 5 pM bicuculline and 2 

pM strychnine, showed a reduced depressant effect when compared to the effect produced by the first 

application of KA in a normal Krebs solution (Fig. 6A). Similar as in the case of the KA effect on 

EPSPs in the Krebs solution, the KA-induced depression was accompanied by the membrane 

depolarization (4.6 ± 1.1 mV, n = 11 slices; Table 3) when slices were perfused with bicuculline and 

strychnine. The ability of KA to suppress primary afferent-evoked EPSPs in the absence of synaptic 
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inhibition-mediated by GABAa and glycine receptors was not affected by successive addition of CGP 

55845 (10 gM), the GABAA receptor antagonist, and S-MCPG (500 gM), the group II an HI 

metabotropic glutamate receptor antagonist (Fig. 5C), suggesting that in the presence of bicuculline 

and strychnine these receptors did not contribute to the KA-induced depression of excitatory 

transmission. 

We next examined the possibility that the blockade of synaptic inhibition by bicuculline and 

strychnine may differentially affect the KA-induced depression of Aô-fiber-evoked monosynaptic, 

polysynaptic and C-fiber-evoked EPSPs. Although, in each of 18 slices bathed in this solution, the 

KA (3 uM) decreased the peak amplitude of Aô-fiber-evoked monosynaptic (by 24.0 ± 4.8%, n = 5; 

Figs. 6B, 7A; Table 2) and polysynapic (by 12.3 ± 6.2%, n = 6; Figs. 6A-C, 7B), and EPSPs elicited 

at C-fiber strength (by 46.6 ± 9.5%, n = 5; Figs. 6B, C, 7C; Table2) after inhibition was blocked, the 

KA depression was only significantly reduced, in comparison to that seen under normal perfusing 

conditions, in the SG cells receiving polysynaptic inputs (P<0.01). Besides reducing the EPSP 

amplitudes we found that KA reduced the area under the EPSPs (Fig. 6C, 7D). This result is 

consistent with anatomical (Hwang et al., 2001) and recent electrophysiological findings (Kerchner et 

al., 2001b; Lee et al., 2002) that presynaptic kainate receptors are present on GAB A and glycinergic 

inhibitory intemeurons in the spinal cord DH, where they regulate GABA/glycine release and likely 

contribute to the modulation of both inhibitory and excitatory synaptic transmission in the spinal cord 

DH. Thus, it can be concluded that whereas the KA-induced long-lasting depression of Aô-fiber-

evoked monosynaptic EPSP (Fig. 7A) and C-fiber-evoked EPSPs (Fig. 7C) occurs independently 

from long-term changes in synaptic inhibition, the KA-induced depression of the polysynaptic EPSP 

is dependent on the modulation of synaptic inhibition by the kainate receptors. 

On the other hand, as illustrated in Fig. 8, a small population of SG cells receiving monosynaptic 

(1 out of 5 slices; Fig. 8A) or polysynaptic (3 out of 6 slices; Fig. 8B) inputs from AÔ- or C-fibers (1 

out of 5 slices; Fig. 8C), showed transient potentiation, or biphasic effect consisting of initial 

depression followed by enhancement of EPSP amplitude by application of KA (3 gM, 2 min). This 

effect was never observed in SG cells perfused with the normal Krebs solution. The excitation 

frequently occurred within the first minute of the application of KA, or, occasionally several minutes 

after washout of KA. We assume that this excitatory effect was a result of a low concentration of KA 

during onset of application or upon washout, combined with a decreased inhibitory drive caused by 

bicuculline and strychnine. 
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Both GluRS and GluR6 subunits contribute to the kainate receptor-induced long-lasting 

depression of excitatory synaptic transmission in the substantia gelatinosa 

We have used kainate receptor mutant mice lacking GluRS (Millie et al., 2000) or GluR6 (Millie et 

al., 1998) subunit to explore their contribution to receptors responsible for the depressant action of 

kainate receptors in the SG neurons. This action was postulated to arise from presynaptic GIuRS-

containing kainate receptors based on the action of the putative selective GluRS agonist ATPA 

(Kerchner et al., 2001b), and the observation that GluRS subunit is highly expressed in small-

diameter DRG cells, on which they may act as autoreceptors (Agrawal and Evans, 1986; Lee et al., 

1999; but see Stegenga and Kalb, 2001). 

We compared the effects of kainate receptor activation on the peak amplitude of primary afferent 

AS- and/or C-fibers-evoked EPSPs in SG neurons from wild-type and kainate receptor mutant mice 

lacking GluRS or GluR6 subunit. Conventional intracellular recordings from SG neurons in acute 

slice preparations were made both in the presence, and in the absence, of GABAa receptor- and 

glycine receptor-mediated synaptic inhibition. As shown in Fig. 9B, a dose-response curve showed a 

higher sensitivity to kainate for SG neurons recorded in wild-type mice as compared to GluRS-

lacking mice. In a representative neuron from a mouse in which the GluRS gene had been disrupted 

(GluRS"'" genotype; Millie et al., 2000), bath application of 3 gM kainate hardly produced any 

depression of primary afferent fiber-evoked EPSPs (Fig. 9A). The concentration required to evoke a 

depression of EPSPs in this neuron was increased to 10 - 20 gM (Fig. 9A,B). The latter result 

indicates that the depressant effect of higher concentrations of kainate on EPSPs in GluRS mutant 

mice may be mediated by activation of other receptors, but not of kainate receptors (Mulle et al., 

1998, 2000; Contractor et al., 2000). The amplitude of AS- or C-fiber EPSPs was significantly 

decreased by 3 gM KA in wild-type mice but only 10-20 gM KA, for the similar degree of depression 

in GluRS mutant mice (Fig. 9B). Taken together, these data show that at KA concentrations of up to 3 

gM (to a few gM), only kainate receptors are activated by KA in the primary afferent fiber-SG neuron 

pathway and that these receptors contain the GluRS subunit. 

Summarized data from 25 SG neurons showing the time course of the KA-induced depression of 

the EPSPs of SG cells recorded in slices absent from GluRS mutant mice are shown in Fig. 9C. In 

almost all slices (22 out of 25 slices; Fig. 9C) KA application caused initial slight depression, 

followed by full recovery. In slices obtained from GluRS mutant mice, the KA-depression was 

accompanied by membrane depolarization (4.7 ± 0.7 mV, n = 25; Table 3). In addition, it should be 

noted that in 7 of 22 SG neurons, KA application caused a remarkable increase in the amplitude of the 

monosynaptic, polysynaptic, and C-fiber EPSPs (Fig. 10). This effect was never observed after 
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application of 3 gM KA to wild-type slices perfused with a normal Krebs solution, but was 

occassionally (5 of 16 cells) seen when bicuculline and strychnine were included in the perfusing 

solution to block G ABA* and glycine receptor-mediated synaptic inhibition (Fig. 8). 

To determine the identity of the subunit(s) comprising kainate receptor that depresses the A8-

fiber-evoked monosynaptic or polysynaptic, and C-fiber-evoked excitatory transmission in the spinal 

SG neurons, we examined slices obtained from GluRS or GiuR6 mutant mouse in a normal Krebs 

solution or a solution containing 5 gM bicuculline and 2 gM strychnine (Fig. 11). In a normal Krebs 

medium, bath application of 3 gM KA for 2min reduced the amplitude of primary afferent Aô-fiber-

evoked monsynapic EPSPs to a similar degree in neurons from wild-type mice, and in mice in which 

the GluRS (Figs. 12A, D and 17A; Table 2) or GluR6 (Figs. ISA and 17A; Table 2) subunits had 

been disrupted. In contrast, Aô-afferent fiber-evoked polysynaptic and C-fiber-evoked EPSPs were 

significantly less depressed in amplitude/area by KA in slices from mice in which there was a null 

mutation either in GluRS (Figs. 12, 17A; Table 2) or GluR6 (Figs. 15, 17A; Table 2) genes, than in 

the slices from wild-type mice. When bicuculline (10 gM) and strychnine (2 gM) were included in 

the perfusing solution to block G ABA* and glycine receptors-mediated synaptic inhibition, KA (3 

gM, 2 min) application to slices obtained from GluRS mutant mice inhibited primary afferent Aô-

fiber monosynaptic (Figs. 13A, D, 17B; Table 2) and polysynaptic EPSPs (Figs. 13B, E, 17B; Table 

2) to a degree similar to that observed in the slices perfused with a normal Krebs solution. However, 

in GluRS mutant neurons, bath application of KA produced a depression of C-fiber-evoked EPSPs 

that was significantly smaller if compared with that recorded in slices of wild-type mice (Figs. 13C, 

F, 17B; Table 2). In contrast to the results obtained in GluRS mutant mice, we found that in neurons 

from mice lacking the GluR6 subunit, the application of KA (3 gM, 2 min) had no depressant effect 

on monosynaptic (Figs. 16A, 17B; Table 2), polysynaptic (Figs. 16B, E, 17B), or C-fiber-evoked 

EPSPs (Fig. 16C, F, 17B; Table2). 

Taken together, these data suggest that: 1) under normal physiological conditions the activation of 

both GluRS and GluR6-containing receptors contributes to the depression of the excitatory synaptic 

transmission in the Aô-fiber-evoked polysynaptic and C afferent fiber-mediated pathways in the SG 

region of adult mice; 2) In contrast, in the absence of synaptic inhibition mediated by GABAa and 

glycine receptors, GluR6 subunit is critically involved in inhibiting Aô- and C-fiber-elicited primary 

afferent neurotransmission in the SG region. On a speculative note, our study envisages that 

polysynaptic Aô- and C-fiber activated pathway, mice lacking GluRS subunit may produce functional 

receptors, whereas the removal of GluR6 subunit might prevent either the production of receptors or 

their delivery to the presynaptic membrane. 
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Besides the small depressant effect of KA on monosynaptic EPSPs in GluR5 mutant mice, which 

is predominantly mediated by the AMP A receptors, bath application of KA (3 pM, 2 min) depressed 

or blocked completely (n = 1; Fig. 14) on the DAP5-sensitive component of EPSP which appeared 

following the perfusion of a slice with bicuculline and strychnine. This data indicate that, in contrast 

to the effect of KA on the AMPA receptor-mediated transmission, the NMDA receptor-mediated 

transmission in the mouse spinal DH may not be affected by the genetic deletion of GluRS subunit in 

kainate receptors. 

Activation of kainate receptors on mouse primary afferent neurons reduces mEPSC frequency 

and may modulate transmitter release 

To provide further evidence for the functional kainate receptors on the adult mouse primary 

afferent neurons, and to determine their subunit composition, we have examined whether the 

application of KA modifies the frequency of action-potential independent miniature EPSCs 

(mEPSCs) recorded from the SG neurons in adult spinal slices of wild-type and GluRS and GluR6 

mutant mice. A previous report did find that KA increases frequency of action potential-independent 

mEPSCs recorded from capsaicin-sensitive SG neurons in young (P8) rat spinal cord slices (Lee et 

al., 1999). This finding supports a role for presynaptic kainate receptors in the regulation of synaptic 

transmission in the nociceptive pathway. 

To test for the presence of presynaptic kainate receptors at adult mouse spinal SG excitatory 

synapses and for their possible role in the presynaptic kainate receptors-mediated depression of 

evoked EPSPs, we examined the effect of kainate receptor activation on frequency and amplitude of 

the spontaneous mEPSCs recorded by using whole-cell voltage-clamp technique. Recordings from 

SG neurons in wild-type spinal slices were made in the presence of 500 nM TTX, which blocked all 

voltage-gated Na1" current, and 5 pM bicuculline plus 2 pM strychnine to eliminate inhibitory events. 

In some experiments, 50 pM DAPV was also used to block NMDA receptors. Neurons were voltage-

clamped at -70 mV, and AMPAR-mediated mEPSCs appeared as inward currents at averaged 

background frequency of 10.8 ± 5.6s"' (n = 10 slices from 7 mice). Upon application of KA (3 pM, 2 

min), the frequency of mEPSCs during the exposure decreased to 64.8 ± 4.1% of the control value (n 

= 10, P<0.01; Fig. 18), suggesting that KA acted at a presynaptic locus. However, no significant 

change in mEPSC amplitude was observed during KA exposure (Fig. 18). Application of 50 pM 

GYKI 53655 or 10-20 pM CNQX eliminated mEPSCs, confirming that the postsynaptic events 

resulted from release of glutamate and predominant activation of AMPA receptor. 
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To determine the subunits comprising kainate receptors underlying the decrease in mEPSC 

frequency, we recorded mEPSCs in mutant mice. In contrast to neurons in wild-type mice, mEPSC 

frequencies in SG neurons from GluRS or GluR6 mutant mice (GluRS-/-, 83.9 ± 6.8% of control, n = 

7 slices from 4 mice, P<0.05 vs. wild-type; GluR6-/-, 85.9 ± 8.1% of control, n = 7 slices from 3 

mice, P<0.05 vs. wild-type; Fig. 18) were significantly less reduced, with no significant change in 

mEPSC amplitude (Fig. 18). This result indicates that presynaptic kainate receptors containing 

GluRS or GluR6 subunit can modulate action potential-independent glutamate release at excitatory 

synapses in the spinal DH. Surprisingly, a change in the holding current during KA application 

occurred in the SG cells from wild-type (-18.3 ± 6.5pA) and GluRS mutant mice (-24.9 ± 6.1pA), but 

not in the cells from GluR6 mutant mice (-0.7 ± 1.7pA, P<0.05 vs. wild-type) (Table 3). This result is 

similar to that obtained with the intracellular recordings, where a significant reduction in membrane 

depolarization was observed in slices from the GluR6 mutant mice when compared to wild-type or 

GluRS mutant mice (2.9 ± 0.7mV, n = 15 GluR6 mutant slices; P<0.01 vs. wild-type or GluRS-/-; 

Table 3). This finding indicates a possible presence of the GluR6 kainate receptor subunit on the 

postsynaptic membrane of the SG neurons, which is contrary to the previous anatomical data (Hwang 

et al., 2000) and the results of the in situ hybridization experiments in rats (Tolle, 1993). 

Nanomolar concentration of KA strongly facilitates excitatory synaptic transmission in the SG 

KA (30 nM, 2 min) produced a robust and long-lasting enhancement of the DR-evoked dual 

component (AMPA/NMDA)-mediated EPSPs (Figs. SA, 19A). This effect, although observed in 1 

out of 4 slices performed in the normal Krebs solution, was more frequently recorded in the presence 

of 5 pM bicuculline and 2 pM strychnine (n = 5 out of 5 slices from 5 mice). The mechanism 

underlying the facilitation of EPSPs at primary afferent-SG synapses has yet to be elucidated. It has 

been recently reported that activation of presynaptic kainate receptors by low doses of KA (50nM) 

can facilitate transmitter release from hippocampal mossy fiber synapses (Schmitz et al., 2001). This 

result indicates that at mossy fiber synapses this form of synaptic plasticity is mediated, at least in 

part, by the long-lasting activation of a kainate autoreceptors. It has been shown in the young (2-3-

week-old) rat spinal DH that long-term potentiation of synaptic transmission, induced by high-

frequency electrical stimulation, was critically dependent on the activation of NMDA receptors 

(Randic et al., 1993). To determine, therefore, if the induction of 30nM KA-induced long-lasting 

potentiation of synaptic responses is dependent upon NMDA receptors, the recordings were carried 

out in the presence of the NMDA receptor antagonist DAPS. We find that perfusion of the slices with 

the cocktail solution containing 50 pM DAPS and bicuculline/strychnine blocked the long-lasting 
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potentiation of EPSPs induced by a low concentration of KA (30 nM, 2 min; Fig. 19A), indicating the 

NMDA-dependency of the effect. The next series of experiments was done using slices from the 

GluRS or the GluR6 mutant mice to examine the possible involvement of the GluRS or the GluR6 

subunit in the KA (30nM)-induced long-lasting potentiation of EPSPs (Fig. 19B). In GluRS mutant 

mice, bath-applied KA (30 nM, 2 min) evoked a short- or long-lasting potentiation in 6 out of 9 slices, 

with no change in the rest. However, none of the slices obtained from the GluR6 mutant mice showed 

any potentiation of EPSPs (no effect of KA in 5 out of 7 slices, and depression in the rest). The 

average time courses for the effects of KA (30 nM, 2 min) in nine GluRS mutant SG cells, and seven 

GluR6 mutant cells, were illustrated in Fig. 19B. Interestingly, the long-lasting potentiation of 

EPSPs-induced by the low concentration of KA was significantly reduced by the absence of GluRS, 

and completely abolished in GluR6 mutants, suggesting that synaptic plasticity in the adult mouse 

spinal cord can be mediated by the GluRS or GluR6 subunit-containing kainate receptors (Bortolotto, 

1999; Gerber et al., 1999; Contractor et al., 2001). 

The biphasic action of ATPA on primary afferent fiber-evoked EPSPs 

As previously shown (Gerber et al., 1999; Kerchner et al., 2001b), and also in the present study, 

the activation of kainate receptor depresses primary afferent-evoked excitatory synaptic transmission 

in the rat and mouse SG region, the effect postulated, in a rat study, to arise from activation of 

presynaptic kainate receptors containing the GluRS subunit (Kerchner et al., 2001b). In the present 

study, we tested this hypothesis by utilizing the putative GluRS selective agonist (R,S)-2-amino-3-(3-

hydroxy-5-/er/-butylisoxazol-4-yl) propanoic acid (ATPA; Clarke et al., 1997) and a GluRS selective 

antagonist (3S,4aR,6S,8aR)-6-((4-carboxyphenyl)methyl-l,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline 

-3-carboxylic acid) (LY 382884; O'Neil et al., 1998), as well as gene-targeted mice deficient in the 

GluRS subunit of the kainate receptor, to determine whether GluRS subunit is involved in the 

depressant effect. 

Here we show that bath application of (RS)-ATPA (1-3 gM, for 2 min) in a Krebs-bicarbonate 

medium causes predominantly a potentiation of EPSPs in 5 out of 7 cells (one cell depressed, and one 

showed no effect) receiving A and/or C fiber primary afferent input (Fig. 20A). This effect was 

accompanied by a depolarization of a membrane potential (3.3 ± 0.6 mV, n = 6). Summarizing the 

data obtained from all seven SG cells, the average time courses showed apparently slow-onset 

potentiation of EPSPs (Fig. 20A) with the maximum effect occurring between 9 and IS min from the 

start of drug application. Therefore, we calculated the change in the EPSP amplitude-induced by 
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ATPA at 9-15 min window, and plotted in a scatter diagram to later compare with other genotypes 

(Fig. 20B). 

When bicuculline (5 gM) and strychnine (2 gM) were included in the perfusing solution to block 

GABAa and glycine receptors, however, ATPA (1-3 gM for 2 min) reversibly depressed (62.6 ± 13.3 

% of control, n = 3; data not shown) the A- and C-afferents-mediated EPSPs in 3 out of 4 SG cells 

tested, whereas one was potentiated. Interestingly, the ATPA-induced biphasic action 

(depression/potentiation) on EPSPs was not blocked by further addition of 50 gM of DAP5 to the 

cocktail solution (depression, n = 2; potentiation, n = I; data not shown), indicating that the ATPA 

action is not NMDA-dependent. 

In contrast to wild-type mice, SG neurons recorded in slices obtained from GluRS mutant mice 

did more frequently show the depression (5 out of 9 slices; Fig. 20B), rather than the potentiation of 

EPSPs following the bath application of ATPA (1 or 3 gM, 2 min). The ATPA effect was 

accompanied by a depolarization of a membrane potential (3.25 ± 0.6mV, n = 4). The depressant 

effect of ATPA seen in the GluRS mutants, was not blocked by bicuculline and strychnine (n = 4; 

data not shown), but it was absent in the slices obtained from GluR6 (n = 4) or GluR5/GluR6/KA2 

(triple; n = 4) mutant mice (Fig. 20B). Interestingly, the resting membrane potential during KA 

application was not changed in GluR6 mutants (0.67 ± 1.2 mV, n = 3), but it was hyperpolarized in a 

triple mutant mice (-4.7 ± 2.9 mV, n = 3). These results show that: 1) the GluRS subunit can 

contribute to a kainate receptor that regulates excitatory synaptic transmission in the SG region in a 

biphasic manner under normal conditions, and 2) the inhibitory tone is critical in determining the 

direction of the regulation of sensory transmission. 

Taken together, our data indicate that ATPA, claimed as a GluRS subunit selective agonist, has 

apparently potentiating effect on spinal synaptic transmission, which is probably mediated by GluRS-

containing kainate receptors, to addition, the depressant effect of ATPA on EPSPs, or depolarizing 

effect on membrane potential may be a side effect deriving from the activation of other kainate 

receptor subunits, or AMPA receptors (Patemain et al., 2000; Clarke and Collingridge, 2002). It has 

been reported that in the absence of the blockade of AMPA receptors by GYKI53655, concentrations 

of ATPA greater than 3 gM resulted in inward currents, presumably due to activation of AMPARs 

(Lauredsen et al., 1985; Clarke et al., 1997). Thus, our observations may reflect heterogeneity in the 

prevalence of GluRS subunit among excitatory and inhibitory intemeurons in the spinal SG or 

nonselective action on heteromeric receptors lacking GluRS unit (Patemian et al., 2000). 

Although we have shown that LY382884 reduced the KA-induced depression of EPSPs (Fig. 2), 

due to its non-selective depressant action on the basal synaptic transmission in the SG neurons, this 
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agent proved not to be useful in our pharmacological analysis of the involvement of GluRS subunit in 

the action of ATPA in the SG region. 

Kainate receptors are involved in long-term synaptic plasticity at primary afferent synapses in 

the mouse substantia gelatinosa 

Involvement of kainate receptors in long-term synaptic plasticity has recently been indicated at 

hippocampal mossy fiber synapses (Bortolotto et al., 1999; Contractor et al., 2001; Lauri et al., 2001) 

and spinal primary afferent synapses (Gerber et al., 1999). However, it is still not clear which subunit 

of kainate receptors is involved in the long-term potentiation (LTP) of excitatory synaptic 

transmission. Bortolotto et al. (1999) showed that the induction of mossy fiber LTP, which is 

independent of NMDA receptor activation (Harris and Cotman, 1986), was occluded in the presence 

of the putative GluRS subunit specific antagonist LY382884. However, Contractor et al. (2001) 

demonstrated that the mossy fiber LTP was significantly impaired in GluR6 mutant mice. Therefore, 

we tested the hypothesis that the GluRS subunit may be involved in LTP in the spinal cord, and this 

result was reported in an abstract form (Gerber et al., 1999). As summarized in Fig. 21, twenty 

minutes after high-frequency tetanic stimulation (3 tetani of 100 pulses at 100Hz) of primary afferent 

fibers in dorsal roots to induce LTP, a significant increase in the peak amplitude of AS- and C-

primary afferent fiber-evoked EPSPs was observed in wild-type mice (133.4 ± 12.0 % of the averaged 

baseline response, n = 7; P<0.05), but not in the GluRS mutant mice (100.1 ± 8.7% of baseline, n = 9; 

P>0.05). However, the mean changes were significantly different between wild-type and GluRS 

mutant mice (P<0.05; Fig. 21A). In addition to LTP, a subpopulation of cells showed long-term 

depression (LTD; Fig. 2IB) when the same stimulation protocol, as for the induction of LTP, was 

used. Eighteen minutes after the induction of LTD, a significant depression of EPSPs was observed in 

wild-type mice (to 55.1 ± 13.3% of the averaged baseline response, n = 7; P<0.01), but not in GluRS 

mutant mice (to 81.1 t 10.4%, n = 3; P>0.05). However, the mean changes were significantly 

different between wild-type and the mutant mice (P<0.05). This result suggests that GluRS kainate 

receptor subunit is involved in the synaptic plasticity in the mouse spinal cord DH (Gerber et al., 

1999). 

3. Discussion 

Mice with disrupted KA receptor subunit genes offer the possibility to investigate the specific 

role of KA receptor subtypes in synaptic transmission. The present study revealed that KA receptors 
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comprised of GluRS and/or GluR6 subunits have multiple and complex roles in regulating excitatory 

synaptic transmission in the substantia gelatinosa region of the spinal cord. Activation of KA 

receptors by exogenous agonist kainate can either suppress or facilitate primary afferent fiber Aô-

fiber- and/or C-fiber-mediated glutamatergic transmission in the adult mouse substantia gelatinosa of 

acutely isolated spinal cord slices. In difference to previous studies, which were based on 

pharmacological characterization of KA receptors, we used gene-targeted mice lacking either GluRS 

or GluR6 KA receptor subunit to determine the identity of receptor subunits comprising KA receptors 

that play a role in modulation of primary afferent neurotransmission. Using this approach, we found 

that in the presence of synaptic inhibition, mediated by G ABA* and glycine receptors, both GluRS 

and GluR6 subunits are involved in inhibiting transmission at the primary afferent AS-fiber-activated 

polysynaptic pathways and C-fiber pathways. In the absence of synaptic inhibition, we report that KA 

receptors suppress excitatory transmission during intense stimulation, but with more mild levels of 

activation, they might be facilitatory. We determined that the GluR6 subunit is critically involved in 

inhibiting transmission at both primary afferent Aô- and C-fiber monosynaptic pathways, whereas 

GluRS plays a lesser role in inhibiting the C-fiber-activated pathway. Moreover, here we show that 

application of kainate at nanomolar concentrations revealed a long-lasting, NMDA receptor-

dependent facilitation of primary afferent neurotransmission. This effect was abolished in GluR6-

deficient mice, but only reduced in GluRS mutants, suggesting that both GluRS and GluR6 KA 

receptor subunits contribute to the KA receptor-mediated potentiation of excitatory transmission at 

synapses on SG neurons. These results suggest: 1) bidirectional regulation of excitatory synaptic 

transmission by KA receptors in the substantia gelatinosa; and 2) a role for kainate receptors in short-

and long-term changes in synaptic strength. Biphasic effects of presynaptic kainate receptor activation 

on excitatory transmission have been demonstrated at hippocampal mossy fiber synapses with CA3 

neurons (Kamiya and Ozawa, 2000; Schmitz et al., 2000,2001; Contractor et al., 2000) 

Kainate receptor-mediated depression of excitatory synaptic transmission 

We have briefly reported that application of KA depresses AMPA receptor-mediated excitatory 

synaptic transmission in the SG region in slices obtained from adult mice (Gerber et al., 1999). It has 

been recently shown that KA and ATPA, a putative selective GluRS-kainate receptor agonist (Clarke 

et al., 1997; Hoo et al., 1999), suppressed NMDA receptor-mediated EPSCs in rat DH neurons 

evoked by stimulation of synaptically coupled DRG cells in DRG-DH neuron co-cultures (Kerchner 

et al., 2001b). Moreover, in recordings from young rat (P2-P21) DH neurons in spinal slices, KA 

suppressed NMDA receptor-mediated EPSCs, whereas ATPA reduced AMPA receptor-mediated 
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EPSCs evoked by dorsal root fiber stimulation (Kerchner et al., 2001b). Based on the observation of 

selectivity of ATPA for DRG cell KA receptors, this effect was postulated to arise from activation of 

presynaptic kainate receptors-containing GluRS subunit (Kerchner et al., 2001b). This finding was in 

agreement with other evidence indicating that KA receptor expressing GluRS subunit is present at 

high levels on small-diameter DRG neurons (Partin et al., 1993; Sato et al., 1993; Hoo et al., 1999; 

Hwang et al., 2001), but is much less prevalent in the spinal cord DH (Toile et al., 1993; Hwang et al., 

2001). However, the contribution of the GluRS, or other subtypes of KA receptor to the AMPA or 

NMDA receptor-mediated spinal sensory transmission and plasticity, has yet to be more directly 

demonstrated. 

In this study we compared the effects of KA on excitatory transmission in monosynaptic and 

polysynaptic primary afferent A8- and C-fiber pathways in the SG region in wild-type and KA 

receptor GluRS or GluR6 subunit gene-deficient mice, in order to determine which receptor subunits 

are involved in the kainate receptor depressant action. We found that in the presence of synaptic 

inhibition mediated by G ABA* and glycine receptors, KA strongly suppressed polysynaptic EPSPs 

evoked by stimulation of primary afferent Aô-fibers, and C-fiber-activated EPSPs (monosynaptic, 

polysynaptic), in neurons from wild-type mice. In contrast, the KA depressant effect on EPSP 

amplitudes recorded from SG neurons in slices from GluRS- and GluR6-deficient mice was 

significantly reduced, suggesting that both GluRS and GluR6 receptor mechanism does account for, at 

least a part of, the KA depressant effect. However, in the absence of synaptic inhibition, we found 

that GluR6 subunit is predominantly involved in inhibiting transmission at both primary afferent AS-

and C-fiber monosynaptic pathways, whereas GluRS subunit plays a lesser role in suppressing the 

transmission in the C-fiber-activated pathways. 

Our data with mice lacking GluRS or GluR6 KA receptor subunit are at least consistent with the 

present evidence suggesting that GluRS and GluR6 can exist as homomeric (Bettler et al., 1990; 

Sommer et al., 1992; Sato et al., 1993; Petralia et al., 1994; Swanson et al., 1996, 1998; Wilding and 

Huettner, 2001) and/or heteromeric receptor combinations (Bettler et al., 1990; Partin et al., 1993; 

Sahara et al., 1997) at primary afferent neurons. Furthermore, it is apparent that GluR6 expressed by 

DRG and/or SG intemeurons, may have the major functional role in the regulation of transmission at 

both primary afferent AS- and C-fiber synapses in the SG region. This possibility does agree with 

what is known about the regional expression of individual subunits (Sato et al., 1993; Toile et al., 

1993; Petralia et al., 1994; Yung, 1998; Dai et al., 2002; Hwang et al., 2001, but see Stagenga and 

Kalb, 2001). 

Because of the apparent divergence between our data from mice lacking GluRS subunit and the 
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findings of pharmacological studies with ATPA in the rat spinal slices (Kerchner et al., 2001b), we 

examined the possibility for the ATPA mediated depression of the primary afferent fiber-evoked 

EPSPs. We found that ATPA enhanced EPSPs-evoked by primary afferent stimulation in neurons 

from wild-type and GluR6-deficient mice; in contrast, suppression of EPSP amplitudes was recorded 

from neurons from GluRS mutants. One potential explanation that may reconcile apparent 

discrepancy between the pharmacological and genetic observations is that ATPA activates 

heteromeric DH neuronal receptors-containing both GluRS and GluR6 subunits. More recent studies 

(Bortolotto et al., 1999; Cui and Mayer, 1999; Patemain et al., 2000) have shown that heteromeric 

KA receptor subunit combinations formed by GluRS plus GluR6 or GluR7 subunits retain sensitivity 

to ATPA. In addition, there is evidence that ATPA can activate heteromeric receptors formed by co-

expression of the GluR6 and KA2 subunits in HEK 293 cells (Patemain et al., 2000). 

It is of interest in relation to our data that in the CA3 region of the hippocampus, KA profoundly 

reduced EPSCs at mossy fiber and collateral synapses in neurons from wild-type and GluRS"'" mice, 

but had no effect on EPSCs in neurons from GluRô"'" mice (Contractor et al., 2000), the results that 

did not support pharmacological experiments with ATPA (Vignes et al., 1998) and LY 382884 

(Bortolotto et al., 1999) suggesting a critical role for GluRS receptors at mossy fiber and associational 

commissural synapses (Vignes et al., 1998; Bortolotto et al., 1999). In contrast, at perforant path 

synapses, KA receptor activation enhanced transmission, and the effect was abolished in both GluRS 

and GluR6 knock-out mice (Contractor et al., 2000). 

Presynaptic kainate receptors decrease action potential-independent glutamate release 

KA receptors are expressed on DRG cell bodies (Huettner, 1990), on peripheral fibers and axon 

terminals (Ault and Hildebrand, 1993), and preferentially on central terminals of sensory neurons, on 

which they could act as true autoreceptors (Agrawal and Evans, 1986; Lee et al., 1999, 2002; 

Kerchner et al., 2001b; Hwang et al., 2001). Previous work has demonstrated strong depolarizing 

responses when KA was applied to dorsal roots (Agrawal and Evans, 1986). Evidence has been 

recently provided for the involvement of presynaptic kainate receptors in the KA-induced depression 

of primary afferent neurotransmission (Lee et al., 1999, 2002; Kerchner et al., 2001b). In the young 

rat (P8) spinal cord, Lee et al., (1999) showed that KA application increased the frequency of 

spontaneous TTX-insensitive postsynaptic currents (mEPSCs), although the synapses responsible for 

these currents (excitatory vs inhibitory; primary afferent synapses vs local synapses) were not 

identified. To provide further evidence for the functional KA receptors on the adult mouse primary 

afferent neurons, and to determine their subunit composition, we have examined the effects of KA 
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receptor activation on frequency and amplitude of mEPSCs recorded from the SG neurons in acutely 

isolated spinal slices of wild-type and GluRS- or GluR6-deficient mice. In contrast to the findings in 

the young rat spinal cord SG, we found that in a subset of the mouse SG neurons, mEPSC frequencies 

were reversibly decreased after activation of KA receptors; this decrease arose from activation of 

receptors incorporating both the GluRS and GluR6 subunit. Although the excitatory synapses 

responsible for the mEPSCs are not identified (primary afferent vs local intemeuronal synapses) with 

any degree of certainty, the observed decrease in frequency, and the dependence on GluRS and GluR6 

subunits supports the hypothesis that some, if not all, KA effects on mEPSC frequency occurred at 

primary afferent synapses, the result in agreement with presynaptic GluRS and GluR6 localization in 

primary afferent terminals to the superficial laminae of the rat spinal cord (Ribeiro-da-Silva and 

Coimbra, 1982; Lee et al., 1999, 2002; Hwang et al., 2001). Our data suggest that KA receptor 

activation causes a decrease in mEPSC frequency, which could account for the depression of evoked 

EPSPs in adult mouse SG neurons. 

The mechanism by which KA receptor activation modulates excitatory synaptic transmission, 

whether at primary afferent synapses or other central synapses, remains unclear (Frerking and Nicoll, 

2000). Studies of the effects of KA receptor agonists on glutamate release from synaptosomes have 

provided contradictory results (Zhou et al., 1995; Chittajallu et al., 1996; Perkinton and Sihra, 1999). 

One hypothesis, that KA receptors regulate glutamate release by a mechanism involving direct 

depolarization of axons or axon terminals, is supported by the finding that in CA1 hippocampal 

neurons, KA induced a transient facilitation of evoked NMDAR-mediated EPSCs before a prolonged 

depression occurred (Chittajallu et al., 1996). More direct evidence that KA receptors mediate axonal 

depolarization comes from investigations of mossy fiber synapses demonstrating that presynaptic KA 

receptor-mediated depression of synaptic transmission was associated with increased mossy fiber 

excitability (Kamiya and Ozawa, 2000; Schmitz et al., 2000). This phenomenon was reproduced 

when synaptically released glutamate from mossy fibers, or associational-commissural fibers, was 

used instead of KA (Schmitz et al., 2000). A potential link between axonal depolarization and 

decrease of glutamate release has been proposed by Kamiya and Ozawa (1998, 2000), who showed 

reduced action potential-triggered Ca2+ influx into mossy fiber terminals with presynaptic KA 

receptor activation. The model proposed to explain these results is that KA receptors are present on 

the presynaptic terminal, which decrease release by a depolarization-induced inactivation of 

presynaptic calcium channels. Our data are at least consistent with such a model by providing direct 

evidence that presynaptic KA receptor activation suppresses primary afferent transmission by 

depolarization of presynaptic fibers. As an alternative to an ionotropic effect of KA on presynaptic 
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sites, some evidence supports a possible G-protein-mediated action of presynaptic KA receptor 

stimulation at CA3-CA1 synapses (Frerking et al., 2001). 

Activation of kainate receptors potentiates excitatory synaptic transmission 

We have recently reported that bath-applied low concentration of KA (30 nM, 2 min) produces a 

robust and long-lasting potentiation of AMPA/NMDA receptor-mediated excitatory synaptic 

responses in the spinal cord SG. The excitatory effect of KA on evoked synaptic responses was 

discovered recently in the Schaffer collateral-commissural synapses on hippocampal CA1 neurons 

(Chittajallu et al., 1996; 300 nM KA) and mossy fiber synapses on CA3 neurons (Schmitz et al., 

2001). However, in all cases, the enhancement of the AMPA receptor-mediated EPSCs (Schmitz et 

al., 2001), synaptic field potential responses (Schmitz et al., 2001), and NMDAR-mediated EPSCs 

(Chittajallu et al., 1996; Schmitz et al., 2001) was reversible, indicating that KA receptors mediated a 

short-lasting plasticity. A series of detailed experiments done by Schmitz et al. (2001) showed that the 

enhancing effect of KA (50 nM) on synaptic responses is associated with a decrease in a paired-pulse 

facilitation, and no change in holding current or the responses to iontophoretically applied NMDA in 

the stratum lucidum of the hippocampus. Thus, they have excluded a possibility for its postsynaptic 

origin. Moreover, they showed that the enhancement of evoked synaptic responses could be 

mimicked by 4 mM K\ and repetitive stimulation (25 or lOOHz)-releasing glutamate, suggesting that 

the facilitatory effect is exerted by a KA receptor-induced depolarization of presynapic terminal via 

ionotropic action. Although the mechanism underlying the KA-induced long-lasting potentiation of 

synaptic efficacy in our work is still unknown, it appears that it is the NMDA receptor-dependent 

process. More interestingly, the long-lasting enhancement of synaptic transmission was blocked in the 

GluR6 knockout mice, but only depressed in the GluRS knockout mice, indicating that the NMDA 

receptor-dependent long-lasting potentiation induced by the low concentration of KA is mediated by 

KA receptors containing exclusively GluR6, or in addition to a smaller extent GluRS. In addition, our 

finding further suggests that there is a functional interaction between kainate and NMDA receptors 

(Ghetti and Heinemann, 2000). 

Recently, in the spinal DH, Kerchner et al. (2001b) showed that low concentration (200 nM) of 

KA has an ability to enhance evoked inhibitory transmission between DH neurons. This result 

provides additional evidence that low concentration of KA may potentiate synaptic strength, although 

this happens at inhibitory synapses under a reduced neuronal excitability produced by raising the 

concentration of Ca2+ and Mg1+ from 2 mM to 6 mM. Therefore, our result obtained from adult mouse 

spinal slices demonstrates a different example of the long-lasting potentiation in the SG region, where 
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under the blockade of inhibitory transmission, low concentration of KA can enhance dorsal root-

evoked synaptic transmission in a dose-dependent, the NMDA receptor-dependent, the KA receptor 

subunit-dependent, and long-lasting manner. Further, this result may explain the reduced magnitude 

of long-term potentiation induced by high-frequency stimulation in the GluRS mutant mice (Fig. 21). 

Summary and significance 

In this study, we demonstrated that activation of kainate receptors composed of GluRS and GluR6 

subunits plays a role in the regulation of excitatory synaptic transmission in the adult mouse spinal 

DH neurons, either by a presynaptic or a postsynaptic mechanism. In contrast to previous studies 

(Kerchner et al., 2001), our data suggest that the GluR6 subunit is critically involved in suppression 

of the A8- and C-fiber-elicited primary afferent neurotransmission in the SG region. Although 

anatomical data from young (less than 3 week-old) rat have indicated the relative abundance of 

GluRS subunit and paucity of the GluR6 subunit in the spinal neurons, information on the anatomical 

profile of kainate receptor subunits in the adult mouse spinal cord DH, is still not available. Thus, the 

developmental regulation of KA receptors and use of a different species may influence the expression 

of KA receptor subunits as well as the effect of kainate receptor activation in the spinal cord DH. We, 

here, summarize our idea about possible localization of kainate receptor GluRS and GluR6 subunits, 

postulated on the basis of anatomical and electrophysiological data from rats and our data obtained in 

adult mouse spinal SG: 1) GluR6 subunit is expressed at A8 primary afferent fiber terminals (Hwang 

et al., 2001; Partin et al., 1993; Sato et al., 1993); 2) both GluRS and GluR6 subunits are expressed at 

C primary afferent fiber terminals (Dai et al., 2002; Hwang et al., 2001; Huettner, 1990; Kerchner et 

al., 2001b; Partin et al., 1993; Sato et al., 1993; Toile et al., 1993; Yung, 1998); 3) GluR6 subunit is 

exclusively expressed on the somatic membrane of SG intemeurons (Yung, 1998; but see also Tolle 

et al., 1993); 4) although these subunit composition of kainate receptors at the terminals of excitatory 

or inhibitory intemeurons is presently not known, our data suggest that presynaptic terminals of 

excitatory intemeurons may have both GluRS and 6. 

Evidence indicates that kainate receptors are associated with nociceptive pathways including 

primary afferents and DRG neurons (Agrawal and Evans, 1986; Huettner, 1990). Recent studies in 

humans suggest that the mixed AMPA/GluRS antagonist, LY293558, can prevent capsaicin-induced 

hyperalgesia and allodynia with no effect on physiological nociception (Sang et al., 1998). Similar 

results are reported in animal studies where formalin-induced- (Simmons et al., 1998), but not acute 

physiological (Procter et al., 1998), nociceptive responses are reduced by GluRS selective 

decahydroisoquinolines. In addition, it has been shown that a kainate receptor antagonist SYM 2081 
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prevents the transmission of nociceptive heat sensation (Li et al., 1999), and reduces allodynia and 

hyperalgesia which were induced in neuropathic pain models (Lauren et al., 2000; Sutton et al., 

1999). These data indicate a functional role of kainate receptors in the development, transmission and 

maintenance of nociception. 

Regulation of excitatory or inhibitory transmission in the DH is essential for proper processing of 

nociceptive and other sensory information. According to the gate control theory (Melzack and Wall, 

1965), the inhibitory effect exerted by SG cells on first central transmission cells (probably, 

projection neurons) is increased by activity in large-diameter fibers and decreased by activity in 

small-diameter fibers. Thus, our findings, which provide a new infusion of evidence on subunit 

profiles of kainate receptors acting as excitatory or inhibitory regulator for the Aô-fiber- or C-fiber-

mediated excitatory transmission on SG neurons, further suggest that the process of nociceptive 

transmission in the spinal SG neurons can finely be tuned by the activation of kainate receptors with 

different subunit compositions. Therefore, building up information on synaptic or somatic location of 

kainate receptor subunits and their physiological functions in the spinal cord DH will provide us with 

clues to develop more specific therapeutic strategy for the treatment of pain. 

Table 1. Passive and active membrane properties of SG neurons obtained from +/+, GluRS mutant (-/-) and 

GluR6-/- mice 

+/+ GluRS-/- GluR6-/-

Resting membrane potential (mV) -74.9 ±0.9 (89) -74.5 ± 1.0 (59) -78.0 ±1.6(31) 

Input resistance (M$2) 203.4 ±32.8 (31) 184.2 ±28.1(21) 201.5 ±50.0 (13) 

Amono-EPSPuueshoid (Vat0.1 ms) 5.4 ±0.7 (23) 5.2 ±0.6 (18) 5.6 ±0.4 (7) 

Amono-EPSP;.,«.;,y (V at 0.1 ms) 7.4 ±0.6 (33) 6.0 ±0.7 (21) 8.7 ±1.0 (11)* 

Amono-EPSPampiirndc (mV) 10.2 ±0.7 (33) 11.7 ±0.9 (19) 10.3 ± 1.9 (9) 

Amono-EPSPcv (m/s) 3.1 ±0.2(41) 3.0 ±0.3 (25) 3J ±0.4 (18) 

C-EPSPcv (m/s) 0.6 ± 0.05 (27) 0.6 ±0.1 (17) 0.7 ±0.2 (7) 

Values shown are the mean ± standard error of mean. The number in parentheses after a value gives the 

number of cells. Abbreviations: Amono, monosynatpic AÔ-fiber-evoked; C-EPSP, C fiber-evoked EPSPs; 

CV, conduction velocity. * indicate a significant difference between +/+ and GluR6-Z- groups (P<0.05). 
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Table 2. Depression of primary afferent fiber-evoked EPSPs by bath-application of 3gM KA in différent 

genotypes, synaptic potentials or perfusion media. 

Solution 

Genotype Type of input Krebs B+S 

+/+ Am 69.3 ±5.7 (8) 76.0 ±4.8 (5) 

Ap 45.8 ±5.1 (5)** vs. Am 87.7 ±6.2 (6)** vs. Krebs 

C 55.8 ± 5.0 (7)* vs. Am 53.4 ±9.5 (5) 

GluR5-/- Am 79.9 ±3.9 (10) 86.1 ±2.8(6) 

Ap 80.1 ± 10.4 (7)* vs. +/+ 90.4 ± 5.6 (8) 

C 75.8 ± 6.4 (9)* vs. +/+ 73.6 ±6.3 (5)* vs. +/+ 

GluR6-/- Am 79.4 ±4.1 (5) 105.6 ±4.4 (6)** vs. +/+ 

Ap 87.3 ± 10.3 (5)** vs. +/+ 91.5 ±5.9 (5) 

C 82.2 ±3.0 (7)** vs. +/+ 96.2 ±2.8 (4)** VS. +/-r 

Values expressed as percentage of control (mean ± standard error of mean) in the peak amplitude of EPSPs 

evoked by stimulation of primary afferent fibers. The number in parentheses after a value gives the number 

of cells. Abbreviations: B+S, Krebs solution containing 5gM bicuculline and 2gM strychnine; +/+, wild-

type mice; GluRS-/-, GluRS mutant mice; GluR6-/-, GluR6 mutant mice; Am, monosynaptic Aô-fiber-

evoked EPSPs; Ap, polysynaptic Aô-fiber-evoked EPSPs; C, C-fiber-evoked EPSPs. Statistical 

significance of data is indicated by asterisks: *, P<0.05; **, P<0.01. 

Table 3. KA -induced membrane depolarization and holding current changes in +/+, GluRS mutant (-/-) and 

GluR6-/- mice 

Membrane potential (mV) +/+ GluR5-/- GluR6-/-

Krebs 5.6 ±0.7 (14) 4.7 ±0.7 (25) 2.9 ±0.7 (15)** 

Bic + strych 4.6 ± 1.1 (11) 3.0 ±0.4 (18) 3.1 ±0.9(11) 

Holding current fpA) 

Bic + strych + TTX -18.3 ±6.5(9) -24.9 ±6.1 (8) -0.7 ±1.7 (7)* 

Values shown are the mean ± standard error of mean. The number in parentheses after a value gives the 

number of cells. Krebs, normal Krebs solution; Bic + strych, a solution containing 5 gM bicuculline + 2 gM 

strychnine; TTX, 0.5 gM tetrodotoxin. Statistical significance is indicated by asterisks: *P<0.05 and 

**P<0.01, vs. +/+. 



Fig. 1. AMPA receptor-mediated excitatory postsynaptic potential. 

A) A diagram shows experimental setup characterizing a mouse transverse spinal cord slice 

preparation with an attached dorsal root (5-10 mm), bipolar stimulating electrode (platinum wire) and 

recording electrode inside glass pipette. SG designates an area of 'substantia gelatinosa' which cells 

are mostly obtained from. 

B) A repetitive stimulation at a frequency of 10 Hz {right) was used to determine synaptic 

connectivity. In a representative SG cell, EPSPs, evoked by electrical stimulation of the attached 

dorsal root, was identified as Aô-fiber-evoked 'monosynaptic' (Amono-) EPSPs on the basis of 

constant latency and no failure. EPSP, recorded in another SG cell and determined as 'monosynaptic', 

was not affected by 50 pM APV, a competitive NMDA receptor antagonist, but completely blocked 

by 50 pM GYKI53655, a selective AMPA receptor antagonist. 

C) EPSP, which showed variable latencies and failures (not shown) following a repetitive stimulation 

at a frequency of 10 Hz (right), was determined as Aô-fiber-evoked 'polysynaptic' (Apoly-) EPSPs. 

Apoly-EPSPs, recorded in another SG cell, were largely blocked by 50 pM APV. 

D) The synaptic connectivity of C fiber-evoked (C-) EPSPs (stimulus intensity: 4.2 V/0.5 ms; 

conduction velocity, 0.53 m/sec) with constant latency and also a failure (star) at a frequency of 10 

Hz (right) was not determined. 
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Fig. 2. Kainate receptor agonists suppress primary afferent neurotransmission in the mouse spinal 

dorsal horn. 

A) A time course graph for nineteen slices obtained from eighteen wild-type mice shows long-lasting 

depression of EPSP peak amplitudes produced by bath application of 3gM KA for 2 min. Each point 

is mean ± s. e. m of baseline percentages from individual cells at a given time. Vm = -63 to -85 mV, 

6-16-week-old mice. 

B) The KA-induced depression of EPSPs was dose-dependent (n = 4 - 19 wild-type slices per 

concentration; R2 = 0.99). 

C) Domoate (0.3 or I gM), known as a more potent KA receptor agonist, reduced the peak 

amplitudes of EPSPs recorded from wild-type slices, in a dose-dependent manner. Time-courses at 

each concentration on the graph were pooled from three slices obtained from 3 mice. Vm = -65 to -73 

mV, 9-week-old mice. 

D) A summary histogram shows that the magnitude of the KA (3 gM, 2 min)-induced depression in 

normal Krebs solution is significantly reduced in the presence of a GluRS subunit specific KA 

receptor antagonist, LY382884 (10 gM) (42.0 ± 3.9% and 18.1 ±5.0% inhibition in the absence or 

presence of LY382884, respectively; **P<0.01). Interestingly, LY382884 itself depressed the 

amplitudes of EPSPs by 22.8 ± 7.5% (P<0.05 vs. baseline). Data are presented as means ± s. e. m. 

Each number on the histogram designates the number of cells observed. 
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Fig. 3. Kainate receptor activation suppresses A- and C-primary afferent fibers-evoked excitatory 

synaptic potentials. 

A-C) Three summary graphs showing the time-course of long-lasting depression of peak amplitude of 

EPSPs according to different types of synaptic inputs. Amono, A-primary afferent fiber-evoked 

monosynaptic EPSP; Apoly, A-primary afferent fiber-evoked polysynaptic EPSP; C-EPSP, C-primary 

afferent fiber-evoked EPSP. The peak amplitude of Apoly (B, n = 5 slices from 5 wild-type mice)- or 

C (C, n = 7 slices from 7 wild-type mice)-EPSPs was more effectively reduced by KA (3 gM for 2 

min) than that of Amono-EPSPs (A, n = 8 slices from 8 wild-type mice). The corresponding time of 

sampled traces above graphs is indicated by the number. Inset shows the approximate location of 

tested SG cells. Each point is mean ± s.e.m at a given time. A, Vm = -63 to -87 mV, 7-13-vveek-old 

mice. B, Vm = -61 to -82 mV, 7-12-week-old mice. C, Vm = -64 to -73 mV, 7-14-week-old mice. 

D) A summary histogram showing mean maximum effects of KA on Amono-, Apoly- or C-EPSPs. 

The inhibition of Apoly- and C-EPSPs by KA was significantly larger than that of Amono-EPSPs 

(Amono, 30.7 ± 5.7%, **P<0.01 vs. baseline; Apoly, 54.2 ± 5.1%, **P<0.01 vs. baseline, ##P<0.01 

vs. Amono; C-EPSPs, 44.2 ± 5.0%, **P<0.01 vs. baseline, #P<0.05 vs. Amono). 

E-F) Summary graphs showing the time-course of long-lasting depression of EPSPs in the area under 

the curve of Apoly and C. 
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Fig. 4. KA increases the probability of synaptic failures and depress the AMPA- and NMDA-

mediated amplitudes of the C-primary afferent fiber-evoked EPSPs. 

The graph shows KA (3 gM, 2 min)-induced depression or failures on peak amplitudes of EPSPs 

evoked by C fiber stimulation (stimulus intensity, 4.2 V/0.5 ms; conduction velocity, 0.53 m/sec) in a 

SG neuron obtained from a wild-type mouse. The latter effect was not present in the presence of 5 

gM bicuculline, a GABAa receptor antagonist, and 2 gM strychnine, a glycine receptor antagonist. 

Further, components of EPSP were isolated by the addition of LY300164, a selective AMPA receptor 

antagonist, and/or DAPV, a competitive NMDA receptor antagonist to the bath solution. The residual 

component of EPSP in the presence of 50 gM LY300164 and 50 gM DAPV was blocked by 

successive addition of 10 gM CNQX, an AMPA/KA receptor antagonist, indicating that all three 

types of ionotropic glutamate receptors, i.e. NMDA, AMPA and KA, mediate the EPSPs. Sample 

traces displayed above the graph are individual synaptic responses taken at the times indicated by the 

numbers. Bars indicate periods of application of each drug. Vm = -72mV, 11-week-old mouse. 
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Fig. 5. Concentration-dependency of the effects of KA on excitatory synaptic transmission in the 

substantia gelatinosa. 

A) The effect of KA on the amplitude of EPSPs in the presence of 5 pM bicuculline and 2 pM 

strychnine was dose-dependent in wild-type mice. Apparently, 3 pM KA significantly suppressed the 

peak amplitude of EPSPs, whereas 0.03 pM KA significantly potentiated. However, no significant 

change was seen at the concentrations of 0.01 pM or 0.1 pM. 

B) The graph shows the pooled data from sixteen wild-type slices (11 mice) in which KA (3 pM, 2 

min) induced long-lasting depression in the presence of bicuculline and strychnine. Vm = -72 to -

83mV, 12-15-week-old mice. 

C) A summary histogram of the different effects of KA on primary afferent fibers-evoked EPSPs in 

different perfusion media. The depressant action of KA on EPSPs is significantly reduced by 5 pM 

bicuculline and 2 pM strychnine, a cocktail solution of bicuculline/strychnine with 10 pM 

CGP55845, a GABA0 receptor antagonist, or further addition of 500 pM (5)-MCPG, a mGluR 

antagonist, to the cocktail. *P<0.05, **P<0.01. Each number on the histogram designates the number 

of slices observed. 
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Fig. 6. The depressant effect of KA on AÔ-fiber-evoked polysynaptic EPSPs is reduced in the 

blockades of synaptic inhibition. 

A) KA (3 pM, 2 min)-induced depression of AÔ-fiber-evoked polysynaptic EPSPs amplitudes was 

reduced in the presence of 5 pM bicuculline and 2 pM strychnine (bic + strych). 50 pM DAPV 

blocked a large portion of the Apoly-EPSPs. Sample traces displayed above the graph are individual 

synaptic responses taken at the times indicated by the numbers. Bars indicate periods of application of 

each drug. Vm = -82 mV, 12-week-old wild-type mouse. 

B-C) Histograms show the significant reduction of the 3 pM KA-induced depression of the A5-fiber 

evoked polysynaptic EPSPs (Apoly) by bicuculline and strychnine in amplitude (B) and area (Q 

(**P<0.01). However, no significant difference is found in Aô-fiber monsynaptic EPSPs (Amono) or 

C-fiber EPSPs. Each number on the histogram designates the number of slices observed. 
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Fig. 7. The blockade of synaptic inhibition reduces the depressant effect of KA on A-primary afferent 

fiber-evoked polysynaptic EPSPs. 

A-E) Summary graphs show the time-course of 3 pM KA-induced depression in peak amplitudes of 

Amono- (A), Apoly- (B) and C-EPSPs (Q and in area under the curve of Apoly- (D) and C-EPSPs 

(E) in Krebs solution or a solution containing 5 pM bicuculline and 2 pM strychnine (bic + strych) in 

wild-type mice. Each point was expressed as mean ± s.e.m. * (P<0.05) and ** (P<0.01) indicate 

significant difference between Krebs and bicuculline + strychnine solution at a given time. SG cells in 

bic + strych: A, Vm = -74 to -82 mV, 12-15-week-old mice; B, Vm = -73 to -83mV, 12-15-week-old 

mice; C, Vm = -72 to -80 mV, 12-14-week-old mice. 
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Fig. 8. The blockade of inhibitory transmission occasionally changes the effect of KA from inhibitory 

to excitatory. 

In three sampled wild-type SG cells with inputs from monosynaptic (A)  and polysynaptic (B)  AG-

fibers, and C fibers (Q, 3 pM KA (2 min), in the presence of 5 pM bicuculline and 2 pM strychnine, 

increased amplitudes of EPSPs. Interestingly, the effect of KA on C-input EPSPs was biphasic (both 

excitatory and inhibitory). A larger portion of monosynaptic A-input EPSPs was blocked by 50 pM 

GYKI 53655 (3rd trace in A), a selective AMPA receptor antagonist, whereas 50 pM DAPV (3rd trace 

in B) effectively blocked polysynaptic A-input EPSPs. The time (minute) following the start of KA 

application is indicated below the traces. A, Vm = -82 mV, 13-week-old mouse. B, Vm = -82mV, 14-

week-old mouse. C, Vm = -80 mV, 13 week-old mouse. 
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Fig. 9. Reduced depression of primary afferent neurotransmission in GluR5 mutant mice. 

A) In a representative neuron obtained from a GluR5 mutant mouse, KA (3pM, 2min) exerted a 

decrease of the peak amplitude of Amono-EPSPs in a dose-dependent manner. Sample traces 

displayed above the graph are individual synaptic responses taken at the times indicated by numbers. 

A polysynaptic component can be seen in the decay phase of EPSPs. Vm = -79 mV, 14-week-old 

mouse. 

B) Dose-response curves were made to summarize the effect of KA (3 pM) on EPSPs in GluR5 

mutant (-/-) mice (closed circles; n = 3 - 25 slices per concentration; Rr = 0.94), and also compared to 

the part of dose-response curve of wild-type mice shown in Fig. 2B {open circles). The curve was 

shifted to the right, and a statistical significance between wild-type and GluR5-Z mice was observed 

only at the concentration of 3 pM (**P<0.01). 

C) A summary graph showing the time-course of 3 pM KA-induced depression of EPSPs for 25 

slices obtained from 19 GluR5 mutant mice. After 15 min wash out of KA, amplitudes of EPSPs were 

recovered to 97.5 ± 5.1% of baseline in GluR5 mutant mice. However, at the same time, those in 

wild-type mice were 71.4 ± 4.8% of baseline (See fig. 2A). Vm = -63 to -85 mV, 9-16-week-old 

mice. 
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Fig. 10. Activation of KA receptors exerts excitatory effects in subpopulation of GluR5 mutant (-/-) 

SG cells. 

A-C) In three representative SG cells, with monosynaptic AÔ-fiber (A) ,  polysynaptic Aô-fiber (B) or 

C-fiber (Q input, obtained from GluR5 mutant mice, the peak amplitude of EPSPs recorded in Krebs 

solution was increased and occasionally reached to the threshold for firing action potentials by dorsal 

roots stimulation. Traces, at the corresponding time indicated by numbers, are shown above graphs. 

Some of overshoot part of action potentials in A and C was truncated by slash. The stars indicate 

EPSPs with action potential firing upon the stimulation, which hampers a correct measurement for the 

amplitude of EPSP. In B, a large portion of the recovered Apoly-EPSPs was inhibited by 50 pM 

DAPV, and the remaining component was completely blocked by the addition of 10 pM CNQX. A, 

Vm = -75 mV, 15-week-old mouse. B, Vm = -72 mV, 13-week-old mouse. C, Vm = -67 mV, 11-

week-old mouse. 
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Fig. 11. Summary graphs showing each time-course of 3 pM KA-induced depression of EPSPs for all 

genotypes in the presence or the absence of 5 bicuculline and 2 pM strychnine. The degree of 

long-lasting depression by KA in the Krebs solution in wild-type mice was significantly reduced in 

GluR5 or GluR6 mutant mice. In the bicuculline and strychnine, the depression of EPSP amplitudes 

was significantly reduced in GluR5 mutant mice, but completely blocked in GluR6 mutant mice. Data 

are expressed as mean ± s.e.m. * (P<0.05) and **(P<0.01) on the data represent significant difference 

against the value in wild-type mice at the same time and solution. 
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Fig. 12. GluR5 subunit is involved in the long-lasting depression of synaptic transmission induced by 

the activation of kainate receptors. 

A-F) Representative traces (A-C) recorded from wild-type (upper traces) and GluR5 mutant (-/-) 

(lower traces) slices are sampled for graphs summarizing for SG cells with inputs from monosynaptic 

Aô-fiber (Amono, n = 10 slices from 9 GluR5-/- mice; D), polysynaptic AÔ-fiber (Apoly, n = 7 slices 

7 GluR5-/- mice; E) and C-fiber (C-EPSP, n = 9 slices from 6 GluR5-/- mice). KA (3 jiM, 2 min)-

induced depression of EPSPs was significantly reduced in GluRS-/- SG cells with inputs from 

polysynaptic Aô-fïbers (E) and polysynaptic Aô-fibers (F), but not in those from monosynaptic Aô-

fibers (D). The peak amplitude of monosynaptic EPSPs recorded from a GluRS-/- SG cell, was not 

affected by 50 pM DAPV but was almost completely blocked by the addition of 50 gM GYKI 53655 

to DAPV. On the other hand, 50 pM DAPV alone decreased the peak amplitudes of Apoly-EPSPs by 

about 50%. The amplitudes of C-EPSPs (C, stimulus intensity, 20 V/0.5 ms; C.V., 0.45 m/s) from a 

GluR5-/- SG cell were also decreased by KA in a reversible manner. D, Vm = -75 to -88mV, 14-16-

week-old GluR5-/- mice; E, Vm = -72 to -84 mV, 11-15-week-old GluR5-/- mice; F, Vm = -60 to -83 

mV, 11-16-week-old GluR5-/- mice. 

G) Diagrams show the approximate location of tested Amono-, Apoly- or C-input SG cells obtained 

from wild-type and GluR5-/- mice. 

H-I) Summary graphs showing the time-course of long-lasting depression of EPSPs in the area under 

the curve of Apoly- (H) and C-EPSPs (/). 

On summary graphs (D-F and H-I), asterisks indicate significant differences between wild-type and 

GluR5-/- at a given time (*P<0.05; **P<0.01), and data for wild-type mice are reproduced from 

Figure 2 for comparison. Each point is mean ± s.e.m. The corresponding times of sampled traces in 

A, B and C are indicated by numbers on the graphs (D-F). 



Fig. 13. Kainate receptors containing GluR5 subunit modulate the C-primary afferent fiber-mediated 

excitatory neurotransmission. 

A-F) Representative traces (A-C) recorded from wild-type (upper traces) and GluR5 mutant (-/-) 

(lower traces) slices in the presence of 5 (jM bicuculine and 2 pM strychnine (bic + strych) are 

sampled for graphs summarizing for SG cells with inputs from monosynaptic Aô-fibers (Amono, n = 

6 slices from 6 GluR5-/- mice; D), polysynaptic AS-fibers (Apoly, n = 8 slices from 7 GluR5-/- mice; 

E) and C-fibers (C-EPSP, n = 5 slices from 4 GluR5-/- mice; F) inputs. A significant reduction of KA 

(3 (J.M, 2 min)-induced depression was observed only in C-EPSPs (F). Blockades of EPSPs by 50 pM 

DAPV and 50 (J.M GYKI53655 are shown in the sampled EPSPs recorded in GluR5-/- SG cells. Test 

stimulus intensities for C-EPSP traces in C are 15 V/0.5 msec (c. v., 0.35 m/s) and 30 V/0.5 ms (c.v., 

0.54 m/s) for wild-type and GluR5-/- SG cells, respectively. D, Vm = -75 to - 88mV, I l-16-week-old 

GluR5-/- mice. E, Vm = -67 to -83 mV, 9-14-week-old GluR5-/- mice. F, Vm = -63 to -83 mV, 8-13-

week-old GluR5-/- mice. 

G) Diagrams show the approximate location of tested Amono-, Apoly- or C-input SG cells obtained 

from wild-type and GluR5-/- mice. 

H-I) Summary graphs, showing the time-courses of changes of EPSPs in the area under the curve of 

Apoly- (H) and C-EPSP (I), also support the result from peak amplitude measurement. 

On summary graphs (D-F and H-I), asterisks indicate significant difference between wild-type and 

GluR5-/- at a give time (*P<0.05. Each point is mean ± s.e.m at a given time. The numbers on the 

graphs (D-F) indicate the corresponding times of sampled traces in A-C. 
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Fig. 14. Activation of kainate receptors differentially modulate AMPA receptor- or NMDA receptor-

mediated synaptic transmission. 

In a representative SG neuron, bath-applied 3 pM KA exerted small depression of monosynaptic 

EPSP amplitudes (closed circle) both in Krebs solution or in bicuculline (5 pM) and strychnine (2 

pM)-containing (bic + strych) solution. However, late component of EPSPs, appeared following the 

inclusion of bicuculline and strychnine to the bath solution, was almost completely blocked by KA, 

which is prominent in the measurement for EPSP area under the trace curve (open circle). Further, 

after wash-out of KA, the recovered late component was completely blocked by 50 pM DAPV, 

indicating that it was NMDA receptor-mediated component. The small depression of monosynaptic 

component of EPSPs, which was observed in the Krebs or bic + strych solution, still existed under the 

condition of NMDA receptor blockade in a similar degree. Sample traces displayed above the graph 

are individual synaptic responses taken at the times indicated by numbers. Bars indicate periods of 

application of each drug. Vm = -75 mV, 16-week-old mouse. 



87 

50rm 

n-
1 2 3 

125 

100 

75 

50 

25 

KA KA KA 

# amplitude 

O area 
bic + strych 

-20 20 40 60 
Time (min) 

80 100 120 



Fig. 15. GluR6 kainate receptor subunit is also involved in the long-lasting depression of synaptic 

transmission induced by the activation of kainate receptors. 

A-C) Graphs show the effects of KA on EPSP amplitudes in SG cells with monosynaptic (A,  Amono; 

n = 5 slices from 5 GluR6 mutant (-/-) mice) and polysynaptic (fl, Apoly; n = 5 slices from 5 GluR6-

/- mice) Aô-fiber, and C-fiber (C, C-EPSP; n = 7 slices from 6 GluR6-/- mice) inputs. Compared to 

wild-type mice, significant reduction in the magnitude of long-lasting depression of EPSPs was 

observed in Apoly- and C-EPSP groups, but not in Amono-EPSP group. The traces displayed above 

the graph are individual synaptic responses in GluR6-/- mice taken at the times indicated by numbers. 

A, Vm = -75 to -90 mV, 13-week-old GluR6-Z- mice. B, Vm = -65 to -83 mV, 13-week-old GluR6-/-

mice. C, Vm = -76 to -90 mV, 13-week-old GluR6-/- mice. 

D) Diagrams show the approximate location of tested Amono-, Apoly- or C-input SG cells obtained 

from GluR6-/- mice. 

E-F) Summary graphs, showing the time-courses of changes of EPSPs in the area under the curve of 

Apoly (£) and C-EPSP (F), also support the result from peak amplitude measurement. 
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Fig. 16. Kainate receptors containing GluR6 subunit contribute to the A- and C-primary afferent 

fiber-depression of excitatory neurotransmission. 

A-C) Graphs show the effects of KA on EPSP (Amono: n = 6 slices from 6 GluR6-/- mice, Apoly: n 

= 5 slices from 4 GluR5-/- mice, and C-EPSPs: n = 4 slices from 4 GluR6-/- mice) amplitudes 

recorded in the presence of 5 pM bicuculline and 2 pM strychnine (indicated by bars) in GluR6 

mutant SG cells. Compared to the wild-type mice, a significant reduction in the magnitude of long-

lasting depression of EPSPs was observed in Amono- and C-EPSP groups, but not in Apoly-EPSP 

group. The traces displayed above the graph are individual synaptic responses in GluR6-/- mice taken 

at the times indicated by numbers. A, Vm = -74 to -89 mV, 8-13-week-old GluR6-/- mice. B, Vm = -

71 to -88 mV, 8-13-week-old GluR6-/- mice. C, Vm = -70 to -89 mV, 9-13 week-old GluR6-/- mice. 

D) Diagrams show the approximate location of tested Amono-, Apoly- or C-input SG cells obtained 

from GluR6-/- mice. 

E-F) Summary graphs, showing the time-courses of changes of EPSPs in the area under the curve of 

Apoly (£) and C-EPSP (F), also support the result from peak amplitude measurement. 
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Fig. 17. Histograms summarize the effects of KA (3 gM, 2 min) on primary afferent fiber-evoked 

EPSPs in  Krebs  solut ion (A)  and bicucul l ine  and s t rychnine-conta ining (bic  +  s t rych)  solut ion (B) .  

Data, expressed as mean ± s. e. m. Statistical significance is indicated by * (P<0.05) and ** (P<0.01), 

compared to wild-type mice, and by ## (P<0.01) compared to GluR5-/- mice. 
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Fig. 18. The KA-induced decrease in miniature EPSC frequency was mediated by the activation of 

GluR5- or GluR6-containing kainate receptors. 

A) Left, Sample traces of miniature EPSC (mEPSC) recordings from a SG cell obtained from a wild-

type slice. KA was bath-applied at a concentration of 3 pM for 2 min. Middle, Right, The cumulative 

probability histograms show that the inter-event intervals after the application of KA are significantly 

longer than that before, but amplitudes are not affected by KA. Vm = -67 mV, 7-week-old mouse. 

B) Left, Sample traces of mEPSC recordings from a SG cell obtained from a GluR5 mutant (-/-) 

mouse. Middle, Right, The cumulative probability histograms show that the inter-event intervals after 

KA are significantly longer, but lesser degree to the wild-type cell, than that before KA, but 

amplitudes are unchanged. Vm = -65 mV, 9-week-old GluR5-/- mouse. 

C) Left, Sample traces of mEPSC recordings from a SG cell obtained from a GluR6-/- mouse. Middle, 

Right, even slighter change between before and after KA application was observed in inter-event 

intervals and amplitudes cumulative distributions. Vm = -63 mV, 9-week-old GluR6-/- mouse. 

D) Histograms summarize all experiments for KA-induced changes in the frequency (left histogram) 

or the amplitude (right histogram) of mEPSCs recorded from wild-type, GluR5-/- and GluR6-Z-

mouse slices. The decrease in the frequency of mEPSCs from wild-type slices (-35.2 ± 4.1%, n = 10 

slices from 7 mice) was significantly reduced in GluR5-Z- (-16.1 ± 6.8%, n = 7 slices from 5 mice; 

*P<0.05) and GluR6V- (-14.1 ± 8.1%, n = 7 slices from 3 mice; *P<0.05) mice. No significant 

change or difference was observed in amplitude histogram among different genotypes. +/+, Vm = -58 

to -73 mV, 7-week-old mice; GluR5-/-, Vm = -61 to -60 mV, 9-week-old mice; GluR6-/-, Vm = -59 

to -67 mV, 9-week-old mice. 
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Fig. 19. GluRS and GluR6 subunits underlie NMD A receptor-dependent long-lasting potentiation of 

excitatory transmission induced by minimal activation of kainate receptors. 

A) Top, Sampled traces recorded in the presence of 5 pM bicuculline and 2 gM strychnine (bic + 

strych) in a slice obtained from a wild-type (+/+) mouse are shown. The peak amplitude of A5-flber-

evoked monosynaptic EPSPs was increased by bath application of 30 nM KA (2min). Middle, In 

sampled traces recorded in the presence of bicuculline/strychnine and 50 piM DAPV, the peak 

amplitude of Aô-fiber-evoked monosynaptic EPSP was not changed by 30 nM KA. Bottom, Summary 

graph for five wild-type slices in the absence of or five wild-type slices in the presence of 50 |oM 

DAPV, a NMDA receptor blocker, shows that the 30nM KA-induced long-lasting potentiation of 

EPSPs was blocked by DAPV. The numbers indicate the corresponding time at which the sample 

traces are taken. Vm = -72 to -87 mV, 6-16-week-old mice. 

B) A graph summarizing the effect of 30 nM KA (2 min) for nine GluRS mutant (-/-) and seven 

GluR6 mutant (-/-) slices in the presence of 5 jiM bicuculline and 2 |iM strychnine is shown. The 

magnitude of long-lasting potentiation induced by 30 nM KA shown in A tends to decrease in the 

time-course graph of GluRS-/- mice. However, 30 nM KA-induced long-lasting potentiation was 

disappeared in GluR6-/-. GluRS-/-, Vm = -63 to -81 mV, 8-16-week-old mice; GluR6-/-, Vm = -72 to 

-89 mV, 8-13-week-old mice. 
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Fig. 20. The selective activation of GluRS-containing kainate receptors is excitatory on primary 

afferent neurotransmission. 

A) In a pooled graph (n = 7 slices from 6 wild-type mice), bath-applied ATPA (1 gM, 2 min), a 

selective GluRS specific agonist, potentiated EPSP peak amplitudes. Sample traces (note: on the basis 

of conduction velocity and test stimulus intensity, which are 0.53 m/sec and 4.2 V/0.5ms, 

respectively, these traces are considered as C-primary afferent fiber-evoked EPSPs) taken at a 

corresponding time indicated by numbers are shown above the graph. Vm = -65 to -85 mV, 8-12-

week-old mice. 

B) A scatter diagram summarizes the effect of ATPA in individual SG cells obtained from seven 

wild-type, nine GluRS mutant (-/-), four GluR6-/- and four triple-/- (GluR5-/-/GluR6-/-/KA2-/-) 

slices. Each effect was calculated as percent change (positive values, potentiation; negative values, 

depression) of EPSP amplitudes at 9-15 min from the onset of ATPA because the peak potentiation of 

EPSPs by ATPA in the wild-type was usually observed at this time. Points with error bar (s.e.m.) are 

the means of the group. The mean percent change in GluRS-/- mice (-14.3 ± 6.9%) was significantly 

different from that in wild-type (32.0 ± 17.7%), GluR6-/- (35.5 ± 16.2%), or Triple-/- (3.2 ± 3.0%) 

mice (P<0.05). 
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Fig. 21. Impaired LTP and LTD in GluRS mutant mice. 

A) Long-term potentiation of A- and/or C-fiber-evoked EPSPs following high-frequency stimulation 

(HFS; 100Hz, 1 or 3 tetani) is reduced in GluRS mutant (-/-) mice (+/+, 133.4 ± 12.0% of baseline at 

20 min after HFS, n = 7 slices from 7 mice, P<0.01 vs. baseline, 7-week-old, Vm= -57 to -65 mV; 

GluRS-/-, 100.1 ± 8.7% at 20 min after HFS, n = 9 slices from 6 mice, 7-10-week-old, Vm= -61 to -

67 mV, P>0.05 vs. baseline; P<0.05, between wild-type and GluRS-/-). Above the graph are 

displayed superimposed EPSPs recorded from neurons receiving C-fiber input prior to and 20 min 

after HFS in both +/+ and GluRS-/- mice. 

B) Long-term depression of synaptic transmission induced by HFS (100Hz, 1 or 3 tetani) is reduced 

in GluRS-/- mice (+/+, 55.1 ± 13.3% of baseline at 18 min after HFS, P<0.01 vs. baseline, n = 7 slices 

from 7 mice, 7-12-week-old, Vm= -62 to -83 mV; GluRS -/-, 81.1 ± 10.4% of baseline, P>0.05 vs. 

baseline, n = 3 slices from 3 mice, 44 to 49 d-old, -54 to -67 mV; P<0.01, between wild-type and 

GluRS-/-). Above the graph are displayed superimposed EPSPs recorded from neurons receiving A5-

flber input prior to and 18 min after HFS in both +/+ and GluRS-/- mice. 
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CHAPTER 5. GENERAL CONCLUSION 

The spinal superficial dorsal horn (SDH), including substantia gelatinosa (SG), is an area where 

primary afferent fibers arising predominantly from skin, but also viscera and muscle, terminate and 

form first synaptic relay with dendrites of dorsal horn neurons. Glutamate is a major neurotransmitter 

at the primary afferent fiber-DH neuronal synapses, so that it makes glutamatergic synapses. It has 

been of great interest since the strength of glutamatergic synaptic transmission in the central nervous 

system, including the spinal cord, is not constant and can be modulated by the rate of activity in 

synaptic pathways. Therefore, experiments to elucidate the mechanism of physiological modulations 

at glutamatergic synapses have intensively been undertaken by neuroscientists. 

During my PhD study, I used gene-targeted mice lacking GluR2 AMP A receptor subunit, or 

GluRS, GluR6 or GluR5/6/KA2 kainate receptor subunits to determine the functional role of these 

subunits comprising AMP A, or kainate receptors, in the adult mouse spinal cord SG region. By using 

conventional intracellular (current-clamp) recordings, and also whole-cell voltage-clamp recordings 

from in vitro mouse spinal cord slices, I have demonstrated the role of Ca2+-permeable AMPA 

receptors in the plasticity of sensory synaptic transmission in GluR2 mutant mice, and the modulatory 

role(s) of kainate receptors, composed of at least GluRS or GluR6 subunits, on spinal excitatory 

synaptic transmission at AÔ- and/or C-primary afferent fiber-SG synapses. Here is a summary of the 

facts that I derived from my PhD work: 

1) On the basis of the rectifying properties of AMPA receptor-mediated excitatory postsynaptic 

currents (EPSCs), the Ca2+ permeability through AMPA receptors expressed on the 

postsynaptic membrane of SG neurons, was efficiently increased due to the genetic deletion of 

GluR2 subunit. 

2) The increased Ca2+-permeability through AMPA receptors caused the enhancement of the high-

frequency stimulation (100 Hz)-induced long-term potentiation (LTP) of excitatory 

postsynaptic potentials (EPSPs). 

3) The enhanced LTP of synaptic transmission, caused by the deletion of GluR2 subunit, was 

NMDA receptor-independent and insensitive to the blockade of high-voltage activated L-type 

Ca2+ channels. 
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4) Bath application of kainate (3 jiM, 2 min) significantly depressed the primary afferent fiber-

evoked EPSPs recorded in the SG neurons obtained from wild-type mice. 

5) Under physiological conditions, i.e., in the presence of synaptic inhibition, both GluRS and 

GluR6 subunits contribute to the depressant action of kainate at the primary afferent C-fiber-

activated monosynaptic and polysynaptic pathways, and AS-fiber-activated polysynaptic 

pathways. 

6) In the absence of synaptic inhibition kainate produced a smaller depressant effect on C-fiber-

evoked EPSPs in the SG neurons from mice lacking the GluRS subunit in comparison to that 

seen in wild-type mice. 

7) In contrast, in the absence of synaptic inhibition, the application of kainate had no effect on 

EPSPs recorded in SG neurons from mice in which the GluR6 gene had been disrupted at A8-

and C-fiber synapses. 

8) The application of KA (3 pM, 2 min) decreases the frequency of spontaneous miniature EPSCs 

(mEPSCs) at primary afferent synapses whereas their amplitude remained unchanged. This 

finding provides evidences that KA acted presynaptically to reduce evoked transmission. 

9) In contrast to the KA effect in wild-type mice, the mEPSC frequencies in the SG neurons in 

slices from the GluRS or GluR6 mutant mice were less reduced, and no significant change in 

mEPSC amplitude was observed. 

10) After blocking inhibitory inputs, the application of kainate at a low concentration (30 nM, 2 

min) revealed a long-lasting NMDA receptor-dependent potentiation of primary afferent 

neurotransmission. 

11) In a normal Krebs-bicarbonate medium, bath application of (RS)-ATPA (1-3 jiM, 2 min), a 

putative GluRS agonist, causes both potentiation and depression of EPSPs in SG neurons 

obtained from wild-type mice. 

12) In contrast to wild-type mice, the application of ATPA (1 or 3 |iM, 2 min) causes 
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predominantly depression of EPSPs in SG neurons from GluRS mutant mice. 

13) The potentiating and the depressant effects of ATPA were not modified by bicuculline and 

strychnine, but the ATPA depressant effect was blocked by genetic deletion of GluR6 or 

GluR5/GluR6/KA2 subunits. 

14) High-frequency tetanic stimulation (100 Hz) induced the long-term potentiation (LTP) of the 

AS- and/or C-primary afferent fiber-evoked EPSPs in wild-type mice, but not in the GluRS 

mutant mice. 

15) At a resting membrane potential the application of KA (3 jiM, 2 min) caused a slow, dose-

dependent and reversible depolarization in SG neurons of wild-type mice. This effect persisted 

in the presence of tetrodotoxin, a Na+ channel blocker, indicating a direct postsynaptic action of 

kainate receptors on SG neurons. 

16) The KA-induced depolarization persisted in the slices obtained from the GluRS mutant mice, 

but it was not present in those from the GluR6 mutant mice. 
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